期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于不完全数据的TAN学习算法 被引量:1
1
作者 王建林 王志海 王学玲 《计算机工程与应用》 CSCD 北大核心 2007年第36期181-184,共4页
TAN算法是一种针对复杂数据且在实际中具有极强的学习能力的有效算法,它已被广泛应用于数据挖掘、机器学习和模式识别领域。由于现实世界中的数据大多是不完全数据,研究了怎样使TAN有效地从不完全数据中学习。首先,用一种有效的方法直... TAN算法是一种针对复杂数据且在实际中具有极强的学习能力的有效算法,它已被广泛应用于数据挖掘、机器学习和模式识别领域。由于现实世界中的数据大多是不完全数据,研究了怎样使TAN有效地从不完全数据中学习。首先,用一种有效的方法直接从不完全数据中估计条件互信息,然后应用估计条件互信息法去扩展基本的TAN算法来处理不相关数据,最后实验比较了扩展的TAN算法和基本的TAN算法。实验结果表明,在大多数不完全数据集合上扩展的TAN算法精确性明显高于基本的TAN算法。虽然扩展的TAN算法时间复杂度高于基本的TAN算法,但在可接受范围之内。此估计条件互信息的方法能够容易地和其它技术相结合来进一步提高TAN算法的性能。 展开更多
关键词 TAN 学习 不完全数据 条件互信息
在线阅读 下载PDF
一种懒惰式决策树和普通决策树结合的分类模型--半懒惰式决策树 被引量:1
2
作者 王建林 王志海 王学玲 《计算机应用与软件》 CSCD 北大核心 2008年第12期229-230,238,共3页
懒惰式决策树分类是一种非常有效的分类方法。它从概念上为每一个测试实例建立一棵"最优"的决策树。但是,大多数的研究是基于小的数据集合之上。在大的数据集合上,它的分类速度慢、内存消耗大、易被噪声误导等缺点,影响了其... 懒惰式决策树分类是一种非常有效的分类方法。它从概念上为每一个测试实例建立一棵"最优"的决策树。但是,大多数的研究是基于小的数据集合之上。在大的数据集合上,它的分类速度慢、内存消耗大、易被噪声误导等缺点,影响了其分类性能。通过分析懒惰式决策树和普通决策树的分类原则,提出了一种新的决策树分类模型,Semi-LDtree。它生成的决策树的节点,如普通决策树一样,包含单变量分裂,但是叶子节点相当于一个懒惰式决策树分类器。这种分类模型保留了普通决策树良好的可解释性,实验结果表明它提高了分类速度和分类精确度,在某些分类任务上它的分类性能经常性地胜过两者,特别是在大的数据集合上。 展开更多
关键词 懒惰式决策树 朴素贝叶斯 半懒惰式决策树算机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部