期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于高分辨率网络的自监督单目深度估计方法
被引量:
4
1
作者
蒲正东
陈姝
+1 位作者
邹北骥
蒲保兴
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023年第1期118-127,共10页
使用深度学习方法进行单目深度估计时,由于使用多级下采样会出现重建结果细节信息缺失、边缘轮廓模糊等问题.为此,提出一种基于高分辨率网络的自监督单目深度估计方法.首先,通过并行连接使得特征图在编码过程中始终保持高分辨率表示,以...
使用深度学习方法进行单目深度估计时,由于使用多级下采样会出现重建结果细节信息缺失、边缘轮廓模糊等问题.为此,提出一种基于高分辨率网络的自监督单目深度估计方法.首先,通过并行连接使得特征图在编码过程中始终保持高分辨率表示,以充分地保留细节信息;其次,为了提高编码器的学习能力,在编码部分引入注意力模块,对图像特征进行筛选和提炼;最后,针对深度估计的多义性问题,利用非相邻帧图像之间的一致性,设计了一种有效的损失函数,并使用可靠性掩膜来消除动点和遮挡点的干扰.在TensorFlow框架下采用KITTI和Cityscapes数据集进行实验,实验结果表明,与已有深度估计方法相比,该方法不仅能够保留预测深度的边缘信息,而且能够提高预测深度的准确性,可达到0.119的平均相对误差.
展开更多
关键词
单目深度估计
卷积神经网络
自监督
编码器
深度估计
在线阅读
下载PDF
职称材料
题名
基于高分辨率网络的自监督单目深度估计方法
被引量:
4
1
作者
蒲正东
陈姝
邹北骥
蒲保兴
机构
湘潭
大学
数学与
计算
科学
学院
湘潭大学计算机学院.网络空间安全学院
中南
大学
计算机
学院
梧州
学院
大数据与软件工程
学院
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023年第1期118-127,共10页
基金
国家重点研发计划(2018AAA0102102)
湖南省自然科学基金(2017JJ2252)
广西自然科学基金(2020GXNSFAA238013)。
文摘
使用深度学习方法进行单目深度估计时,由于使用多级下采样会出现重建结果细节信息缺失、边缘轮廓模糊等问题.为此,提出一种基于高分辨率网络的自监督单目深度估计方法.首先,通过并行连接使得特征图在编码过程中始终保持高分辨率表示,以充分地保留细节信息;其次,为了提高编码器的学习能力,在编码部分引入注意力模块,对图像特征进行筛选和提炼;最后,针对深度估计的多义性问题,利用非相邻帧图像之间的一致性,设计了一种有效的损失函数,并使用可靠性掩膜来消除动点和遮挡点的干扰.在TensorFlow框架下采用KITTI和Cityscapes数据集进行实验,实验结果表明,与已有深度估计方法相比,该方法不仅能够保留预测深度的边缘信息,而且能够提高预测深度的准确性,可达到0.119的平均相对误差.
关键词
单目深度估计
卷积神经网络
自监督
编码器
深度估计
Keywords
monocular depth estimation
convolutional neural network
self-supervision
encoder
depth estimation
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于高分辨率网络的自监督单目深度估计方法
蒲正东
陈姝
邹北骥
蒲保兴
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部