期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进自适应MOEA/D算法的楼宇负荷优化调度 被引量:7
1
作者 易灵芝 林佳豪 +2 位作者 刘建康 罗显光 李旺 《计算机工程与应用》 CSCD 北大核心 2022年第2期295-302,共8页
针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和... 针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和约束条件;将广义分解与均匀分配相结合产生新的自适应权重向量使算法非支配解更接近真实帕累托前沿;采用历史经验的思想通过计数SBX和DE两种交叉算子对外部存档的贡献率,运用轮盘赌的方式实现自适应选择策略;通过特性约束条件映射对产生的子代点进行修正,间接地扩大了算法搜索空间,提高了种群多样性。通过测试函数验证了改进的AWS-MOEA/D算法的收敛性和优越性;在某小区楼宇住户调度仿真实验结果表明,所改进的算法在调度后能节省更多的电费,并有效地提高了新能源消纳率。 展开更多
关键词 楼宇微电网 自适应选择策略 自适应权重向量 基于分解的多目标进化算法(MOEA/D) 自动需求响应
在线阅读 下载PDF
基于分治策略的NP-MLSTM非侵入式负荷辨识方法 被引量:5
2
作者 易灵芝 黄其森 +3 位作者 刘文翰 赵健 陈章 罗显光 《电力系统及其自动化学报》 CSCD 北大核心 2021年第10期112-118,共7页
为降低电力负荷数据样本类别不平衡、提高负荷辨识精度,提出一种基于分治策略的二分类多层长短时记忆网络模型非侵入式负荷辨识方法。首先,对负荷样本进行平衡化处理,降低样本间的不平衡度;然后,选择合适的特征变量,并进行特征变量与样... 为降低电力负荷数据样本类别不平衡、提高负荷辨识精度,提出一种基于分治策略的二分类多层长短时记忆网络模型非侵入式负荷辨识方法。首先,对负荷样本进行平衡化处理,降低样本间的不平衡度;然后,选择合适的特征变量,并进行特征变量与样本标签的相关性分析;接着,利用分治策略的思想将多分类问题转化为多层择优二分类问题,构建基于分治策略的NP-MLSTM非侵入式负荷辨识模型;最后,选用公开数据集对55户家庭中的11种不同类别的电器进行负荷辨识测试,并与其他模型进行效果对比。结果表明,本文提出的负荷辨识模型综合精确度达到92%以上,各性能指标均优于其他模型。 展开更多
关键词 非侵入式负荷辨识 类别不平衡 特征选取 核典型关联分析 长短时记忆网络 辨识精度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部