期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于CSA-PLS算法的养殖水体水质快速高光谱预测反演模型研究 被引量:3
1
作者 马启良 刘梅 +2 位作者 祁亨年 杨小明 原居林 《海洋与湖沼》 CAS CSCD 北大核心 2024年第2期375-385,共11页
养殖水体水质的优劣直接影响养殖对象的成长,准确、快速、全面地掌控养殖水环境的水质参数变化情况具有重要意义。传统的水质指标监测方法都通过人工采样的方式,不仅耗费时间长,且只能体现局部水体情况。针对这些问题,提出了一种乌鸦搜... 养殖水体水质的优劣直接影响养殖对象的成长,准确、快速、全面地掌控养殖水环境的水质参数变化情况具有重要意义。传统的水质指标监测方法都通过人工采样的方式,不仅耗费时间长,且只能体现局部水体情况。针对这些问题,提出了一种乌鸦搜索算法(CSA)结合偏最小二乘回归(PLSR)的高光谱特征波段筛选方法,快速构建回归模型,实现光谱数据的精准预测反演。以连片的养殖小区为研究对象,采集养殖水体样本并拍摄同时期的高光谱影像数据。首先对提取的采样点光谱数据利用多种数据变换方法分别预处理;其次利用这些数据,对水质指标总氮(TN)、氨氮(NH_(4)^(+)-N)、总磷(TP)和化学需氧量(COD)分别构建全波段的SVR和AdaBoost回归模型,同时与提出的CSA-PLS自动筛选波段方法和传统的连续投影算法(SPA)筛选波段后构建的模型进行比较分析;最后根据决定系数(R^(2))和均方根误差(REMS)选出适合各水质指标的最优模型。从实验结果可以看出,所提波段筛选方法的AdaBoost模型预测结果优于SVR和传统SPA方法提取特征波段后构建的模型,与全波段最优模型相比,在评价指标R^(2)和RMSE上TN提升了18.32%和10.73%;NH_(4)^(+)-N提升了17.42%和11.19%;COD提升了2.15%和2.54%。结果表明,基于CSA-PLS算法的光谱波段自动筛选方法结合AdaBoost构建的预测反演模型是有效、可行的,具有较高的精准度,为实现养殖水环境实时准确的预警调控提供了一种新的数据预测模型。 展开更多
关键词 高光谱数据 水质预测 乌鸦搜索算法 养殖水环境 集成学习
在线阅读 下载PDF
基于EMD最优匹配的分层联邦学习算法
2
作者 吴小红 李佩 +1 位作者 顾永跟 陶杰 《计算机工程》 北大核心 2025年第2期170-178,共9页
联邦学习允许多个客户端在不共享私有数据的情况下协同训练高性能的全局模型。在跨组织场景的水平联邦学习环境下,客户端本地数据分布中的统计异质性将降低全局模型的性能。为提升联邦学习的全局模型性能,同时避免牺牲客户端隐私和增加... 联邦学习允许多个客户端在不共享私有数据的情况下协同训练高性能的全局模型。在跨组织场景的水平联邦学习环境下,客户端本地数据分布中的统计异质性将降低全局模型的性能。为提升联邦学习的全局模型性能,同时避免牺牲客户端隐私和增加计算成本,提出一种新的混合联邦学习算法FedAvg-Match,其基本思路是通过改进联邦学习算法提升客户端的模型质量。该算法面向以不平衡标签分布为特征的数据异构性,在分层联邦学习框架下设计客户端分组聚合算法来减轻客户端数据异构性对模型性能的影响。针对客户端优化分组问题,设计一种基于动态规划的客户端匹配算法DP-ClientMatch,根据客户端的数据分布距离EMD得到最优的客户端分组匹配。在MNIST、Fashion-MNIST和CIFAR-103个数据集上的实验结果表明,与其他联邦学习算法相比,在高度统计异质性的联邦学习场景下,FedAvg-Match算法使全局模型测试精度最少可提高10百分点,可以显著提高联邦学习全局模型在图像分类任务上的性能。 展开更多
关键词 联邦学习 非独立同分布数据 最优匹配 EMD最优匹配 模型质量
在线阅读 下载PDF
基于多模态上下文融合及语义增强的虚假新闻检测
3
作者 郝秀兰 徐稳静 +1 位作者 魏少华 刘权 《中文信息学报》 北大核心 2025年第5期140-149,共10页
深度学习算法在虚假新闻检测关键特征提取方面具有优势,然而,现有的基于深度学习的多模态虚假新闻检测方法仍存在不足之处,例如,从输入的图像与文本中提取特征并进行特征融合时存在融合不充分的问题。针对这一问题,该文提出了一种基于... 深度学习算法在虚假新闻检测关键特征提取方面具有优势,然而,现有的基于深度学习的多模态虚假新闻检测方法仍存在不足之处,例如,从输入的图像与文本中提取特征并进行特征融合时存在融合不充分的问题。针对这一问题,该文提出了一种基于多模态上下文融合及语义增强的虚假新闻检测模型MCEFSE(Multimodal Context based Early Fusion and Semantic Enhancement)。首先,该文利用预训练语言模型BERT对句子进行编码。同时,以Swin Transformer模型作为主要框架,在早期视觉特征编码时引入文本特征,增强语义交互。此外,我们还使用InceptionNetV3作为图像模式分析器。最后,对文本语义、视觉语义和图像模式特征进行细化和融合,得到最终的多模态特征表示。结果显示,MCEFSE模型在微博数据集和微博-21数据集上的准确率分别为0.921和0.932,验证了该方法的有效性。 展开更多
关键词 虚假新闻检测 多模态上下文 特征融合 语义增强
在线阅读 下载PDF
基于域间Mixup微调策略的跨被试运动想象脑电信号分类算法 被引量:1
4
作者 蒋云良 周阳 +2 位作者 张雄涛 苗敏敏 张永 《智能系统学报》 CSCD 北大核心 2024年第4期909-919,共11页
为了缓解传统微调算法的灾难性遗忘问题,本文提出了一种基于域间Mixup微调策略的跨被试运动想象脑电信号分类算法Mix-Tuning。Mix-Tuning通过预训练、微调的二阶段训练方式,实现跨领域知识迁移。预训练阶段,Mix-Tuning使用源域数据初始... 为了缓解传统微调算法的灾难性遗忘问题,本文提出了一种基于域间Mixup微调策略的跨被试运动想象脑电信号分类算法Mix-Tuning。Mix-Tuning通过预训练、微调的二阶段训练方式,实现跨领域知识迁移。预训练阶段,Mix-Tuning使用源域数据初始化模型参数,挖掘源域数据潜在信息。微调阶段,Mix-Tuning通过域间Mixup,生成域间插值数据微调模型参数。域间Mixup数据增强策略引入源域数据潜在信息,缓解传统微调算法在样本稀疏场景下的灾难性遗忘问题,提高模型的泛化性能。Mix-Tuning被进一步应用于运动想象脑电信号分类任务,实现了跨被试正向知识迁移。Mix-Tuning在BMI数据集的运动想象任务达到了85.50%的平均分类准确率,相较于被试–依赖和被试–独立训练方式的预测准确率58.72%和84.01%,分别提高26.78%和1.49%。本文分析结果可为跨被试运动想象脑电信号分类算法提供参考。 展开更多
关键词 域间Mixup 预训练 微调 脑电信号 运动想象 跨被试知识迁移 卷积神经网络 正则化
在线阅读 下载PDF
基于语篇解析和图注意力网络的对话情绪识别 被引量:1
5
作者 郝秀兰 魏少华 +1 位作者 曹乾 张雄涛 《电信科学》 北大核心 2024年第5期100-111,共12页
对话情绪识别研究主要聚焦于融合对话上下文和说话者建模的相互关系。当前研究通常忽略对话内部存在的依存关系,导致对话的上下文联系不够紧密,说话者之间的关系也缺乏逻辑。因此,提出了一种基于语篇解析和图注意力网络(discourse parsi... 对话情绪识别研究主要聚焦于融合对话上下文和说话者建模的相互关系。当前研究通常忽略对话内部存在的依存关系,导致对话的上下文联系不够紧密,说话者之间的关系也缺乏逻辑。因此,提出了一种基于语篇解析和图注意力网络(discourse parsing and graph attention network,DPGAT)的对话情绪识别模型,将对话内部的依存关系融入语境建模过程中,使语境信息更具有依赖性和全局性。首先,通过语篇解析获取对话内部的话语依存关系,构建语篇依存关系图和说话者关系图。随后,通过多头注意力机制将不同类型的说话者关系图进行内部融合。此外,在图注意力网络的基础上,结合依存关系进行循环学习,以达到上下文信息和说话人信息的有效融合,实现对话语境信息的外部融合。最终,通过分析内、外部融合的结果还原完整对话语境,并对说话者的情绪进行分析。通过在英文数据集MELD、EmoryNLP、DailyDialog和中文数据集M3ED上进行评估验证,F1分数分别为66.23%、40.03%、59.28%、52.77%,与主流的模型相比,所提模型具有较好的适用性,可在不同的语言场景中使用。 展开更多
关键词 对话情绪识别 语篇解析 图注意力网络
在线阅读 下载PDF
融合异常检测与区域分割的高效K-means聚类算法 被引量:2
6
作者 尹宏伟 杭雨晴 胡文军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期80-88,共9页
传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,... 传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,以提高聚类性能。其次,利用近邻簇搜索技术对各类簇进行自适应的区域分割,以减少冗余计算,提高算法执行效率。最后,为验证所提方法的有效性,在多个合成数据集和真实数据集上分别进行测试。实验结果表明:所提算法聚类性能和执行效率优于其他算法;在添加10%异常样本的Wine数据集上准确度可达0.911。 展开更多
关键词 聚类 K-MEANS 异常检测 区域分割 近邻簇搜索 自适应
在线阅读 下载PDF
属性权重未知情况下犹豫模糊多属性决策方法 被引量:3
7
作者 申情 蒋云良 张雄涛 《智能系统学报》 CSCD 北大核心 2022年第4期728-736,共9页
针对属性权重未知的犹豫模糊多属性决策,利用犹豫模糊元边界的确定性与边界内隶属度的犹豫性,把犹豫模糊元转换成集对分析中的三元联系数;再根据三元联系数的势函数和属性离差最大法确定属性权重,基此建立属性权重未知条件下的基于三元... 针对属性权重未知的犹豫模糊多属性决策,利用犹豫模糊元边界的确定性与边界内隶属度的犹豫性,把犹豫模糊元转换成集对分析中的三元联系数;再根据三元联系数的势函数和属性离差最大法确定属性权重,基此建立属性权重未知条件下的基于三元联系数的犹豫模糊多属性决策模型,利用模型中不同犹豫强度对备选方案进行排序。实例计算和对比分析结果表明,新模型不仅包含了其他模型得到的结果,还提供了更多潜在的排序方案信息,由此形成的有条件决策,是犹豫模糊多属性决策不确定性本质属性的映照,与犹豫模糊多属性决策实际应用情况吻合。 展开更多
关键词 犹豫模糊多属性决策 犹豫模糊元 属性权重 三元联系数 势函数 犹豫强度示性系数 离差最大法 条件决策
在线阅读 下载PDF
融合递增词汇选择的深度学习中文输入法
8
作者 任华健 郝秀兰 徐稳静 《电信科学》 2022年第12期56-64,共9页
输入法的核心任务是将用户输入的按键序列转化为汉字序列。应用深度学习算法的输入法在学习长距离依赖和解决数据稀疏问题方面存在优势,然而现有方法仍存在两方面问题,一是采用的拼音切分与转换分离的结构导致了误差传播,二是模型复杂... 输入法的核心任务是将用户输入的按键序列转化为汉字序列。应用深度学习算法的输入法在学习长距离依赖和解决数据稀疏问题方面存在优势,然而现有方法仍存在两方面问题,一是采用的拼音切分与转换分离的结构导致了误差传播,二是模型复杂难以满足输入法对实时性的需求。针对上述不足提出了一种融合了递增词汇选择算法的深度学习的输入法模型并对比了多种softmax优化方法。在人民日报数据和中文维基百科数据上进行的实验表明,该模型的转换准确率相较当前最高性能提升了15%,融合递增词汇选择算法使模型在不损失转换精度的同时速度提升了130倍。 展开更多
关键词 中文输入法 长短期记忆 词汇选择
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部