-
题名轴承剩余使用寿命的注意力多尺度卷积神经网络预测
被引量:6
- 1
-
-
作者
莫坚
张泽
-
机构
湖南铁道职业技术学院铁道机车与车辆学院
浙江大学机械学院
-
出处
《现代制造工程》
CSCD
北大核心
2023年第8期148-154,共7页
-
基金
2020年度浙江省科技厅重点研发计划立项项目(2020A01002)。
-
文摘
为了提高滚动轴承剩余使用寿命预测精度,提出了基于注意力多尺度卷积神经网络(Attention Multi-scale Convolution Neural Network,AMCNN)的剩余使用寿命预测方法。首先,将轴承振动信号进行互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD),得到本征模态函数(Intrinsic Mode Function,IMF)分量,并基于其能量累计占比选择了前5个IMF分量作为浅层特征。其次,融合了深度学习、多尺度感知和注意力机制,构造了注意力多尺度卷积神经网络。最后,设计了注意力多尺度卷积神经网络对轴承剩余使用寿命的预测步骤。经XJTU-SY轴承数据集验证,AMCNN对轴承剩余使用寿命预测的MAE=2.41、RMSE=3.12,远小于标准卷积神经网络(Standard Convolutional Neural Network,SCNN)和多尺度卷积神经网络(Multi-scale Convolution Neural Network,MCNN)预测的MAE和RMSE值,说明3种网络中AMCNN对轴承剩余使用寿命的预测精度最高,验证了注意力多尺度卷积神经网络在轴承剩余使用寿命预测中的可行性和优越性。
-
关键词
滚动轴承
剩余使用寿命
多尺度感知
卷积神经网络
注意力机制
-
Keywords
rolling bearing
remaining useful life
multi-scale sensing
Convolutional Neural Network(CNN)
attention mechanism
-
分类号
TH133.33
[机械工程—机械制造及自动化]
TP183
[自动化与计算机技术—控制理论与控制工程]
-