期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv3的实时交通标志检测算法 被引量:11
1
作者 张达为 刘绪崇 +2 位作者 周维 陈柱辉 余瑶 《计算机应用》 CSCD 北大核心 2022年第7期2219-2226,共8页
针对目前我国智能驾驶辅助系统识别道路交通标志检测速度慢、识别精度低等问题,提出一种基于YOLOv3的改进的道路交通标志检测算法。首先,将MobileNetv2作为基础特征提取网络引入YOLOv3以形成目标检测网络模块MN-YOLOv3,在MN-YOLOv3主干... 针对目前我国智能驾驶辅助系统识别道路交通标志检测速度慢、识别精度低等问题,提出一种基于YOLOv3的改进的道路交通标志检测算法。首先,将MobileNetv2作为基础特征提取网络引入YOLOv3以形成目标检测网络模块MN-YOLOv3,在MN-YOLOv3主干网络中引入两条Down-up连接进行特征融合,从而减少检测算法的模型参数,提高了检测模块的运行速度,增强了多尺度特征图之间的信息融合;然后,根据交通标志目标形状的特点,使用K-Means++算法产生先验框的初始聚类中心,并在边界框回归中引入距离交并比(DIOU)损失函数来将DIOU与非极大值抑制(NMS)结合;最后,将感兴趣区域(ROI)与上下文信息通过ROIAlign统一尺寸后融合,从而增强目标特征表达。实验结果表明,所提算法性能更好,在长沙理工大学中国交通标志检测(CCTSDB)数据集上的平均准确率均值(mAP)可达96.20%。相较于FasterR-CNN、YOLOv3、CascadedR-CNN检测算法,所提算法拥有具有更好的实时性和更高的检测精度,对各种环境变化具有更好的鲁棒性。 展开更多
关键词 目标检测 特征融合 YOLOv3 距离交并比 MobileNetv2 K-Means++
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部