期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv8优化改进的太阳能电池片缺陷检测模型
1
作者
彭自然
王思远
肖伸平
《光电工程》
CAS
CSCD
北大核心
2024年第11期88-101,共14页
针对太阳能电池片缺陷检测中存在检测精度低、误检和漏检率高的问题,本文在深度学习模型YOLOv8的基础上进行优化与改进,提出了一种太阳能电池片电致成像(electroluminescent,EL)缺陷检测模型。首先,采用自校准光照学习(self-calibrated ...
针对太阳能电池片缺陷检测中存在检测精度低、误检和漏检率高的问题,本文在深度学习模型YOLOv8的基础上进行优化与改进,提出了一种太阳能电池片电致成像(electroluminescent,EL)缺陷检测模型。首先,采用自校准光照学习(self-calibrated illumination,SCI)方法对低光照图像进行预处理,以增强太阳能电池片缺陷的有效特征信息。然后,引入一个空间到深度的注意力模块(space-to-depth,SPD),替换主干网络的第二个跨步卷积层,避免跨步卷积导致的信息丢失,扩大感受野,减少计算量,从而在特征提取时保留更多特征信息。其次,构建了空间双向要素金字塔网络(spatial-BiFPN,S-BFPN),通过多尺度特征融合,解决因太阳能电池片缺陷形状多样性而造成缺陷识别率不稳定的问题。最后,本文改进了损失函数,使用MPDIoU作为损失函数,解决了原有的CIoU损失函数中惩罚项失效的问题。实验结果显示,改进后的YOLOv8模型的mAP达到了96.9%,比原始YOLOv8提升了2.2%,计算量减少了0.2 GFlops,检测速度最高达155 f/s,实现了高精度与高实时性,更适合工业部署。
展开更多
关键词
深度学习
太阳能电池片
缺陷检测
YOLOv8
在线阅读
下载PDF
职称材料
一种基于CatBoost优化的光伏阵列故障诊断模型
被引量:
1
2
作者
彭自然
许怀顺
肖伸平
《电子学报》
EI
CAS
CSCD
北大核心
2024年第7期2418-2428,共11页
大部分光伏电站地处偏僻、地形复杂的区域,受到外界环境的影响,易发生各种故障.而传统的光伏阵列故障诊断方法存在精度不高以及光伏数据利用率低等问题.针对以上问题,本文先是通过引入Levy飞行策略和步长因子动态调整策略改进麻雀搜索算...
大部分光伏电站地处偏僻、地形复杂的区域,受到外界环境的影响,易发生各种故障.而传统的光伏阵列故障诊断方法存在精度不高以及光伏数据利用率低等问题.针对以上问题,本文先是通过引入Levy飞行策略和步长因子动态调整策略改进麻雀搜索算法(Sparrow Search Algorithm,SSA),降低SSA算法陷入局部最优的风险,提升SSA算法的寻优能力.然后采用改进的Levy步长调整麻雀搜索算法(Levy Adjustment Sparrow Search Algorithm,LASSA)对CatBoost模型关键超参数进行寻优,提出了一种基于CatBoost并以LASSA为优化策略的光伏阵列故障诊断模型LASSA-CatBoost,以实现光伏阵列的短路、开路、老化和阴影遮挡故障的精确诊断.实验结果表明,LASSA-CatBoost模型的故障诊断准确率为99.7%,相较于优化前的CatBoost模型,准确率提高了3.6%.与现有的光伏阵列故障诊断模型相比,LASSA-CatBoost模型的准确性和稳定性更高.
展开更多
关键词
光伏阵列
故障诊断
I-V特性曲线
CatBoost
Levy
adjustment
sparrow
search
algorithm
在线阅读
下载PDF
职称材料
题名
基于YOLOv8优化改进的太阳能电池片缺陷检测模型
1
作者
彭自然
王思远
肖伸平
机构
湖南
工业大学
电
气与信息工程学院
湖南省电传动控制与智能装备重点实验室
出处
《光电工程》
CAS
CSCD
北大核心
2024年第11期88-101,共14页
基金
国家重点研发计划基金资助项目(2019YFE0122600)
湖南省教育厅重点科研项目(22A0423)
湖南省自科基金项目(2023JJ60267,2022JJ50073)。
文摘
针对太阳能电池片缺陷检测中存在检测精度低、误检和漏检率高的问题,本文在深度学习模型YOLOv8的基础上进行优化与改进,提出了一种太阳能电池片电致成像(electroluminescent,EL)缺陷检测模型。首先,采用自校准光照学习(self-calibrated illumination,SCI)方法对低光照图像进行预处理,以增强太阳能电池片缺陷的有效特征信息。然后,引入一个空间到深度的注意力模块(space-to-depth,SPD),替换主干网络的第二个跨步卷积层,避免跨步卷积导致的信息丢失,扩大感受野,减少计算量,从而在特征提取时保留更多特征信息。其次,构建了空间双向要素金字塔网络(spatial-BiFPN,S-BFPN),通过多尺度特征融合,解决因太阳能电池片缺陷形状多样性而造成缺陷识别率不稳定的问题。最后,本文改进了损失函数,使用MPDIoU作为损失函数,解决了原有的CIoU损失函数中惩罚项失效的问题。实验结果显示,改进后的YOLOv8模型的mAP达到了96.9%,比原始YOLOv8提升了2.2%,计算量减少了0.2 GFlops,检测速度最高达155 f/s,实现了高精度与高实时性,更适合工业部署。
关键词
深度学习
太阳能电池片
缺陷检测
YOLOv8
Keywords
deep learning
solar cells
defect detection
YOLOv8
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
一种基于CatBoost优化的光伏阵列故障诊断模型
被引量:
1
2
作者
彭自然
许怀顺
肖伸平
机构
湖南
工业大学
电
气与信息工程学院
湖南省电传动控制与智能装备重点实验室
出处
《电子学报》
EI
CAS
CSCD
北大核心
2024年第7期2418-2428,共11页
基金
国家重点研发计划基金(No.2019YFE0122600)
湖南省教育厅重点科研项目(No.22A0423)
湖南省自科基金(No.2023JJ60267,No.2022JJ50073)~~。
文摘
大部分光伏电站地处偏僻、地形复杂的区域,受到外界环境的影响,易发生各种故障.而传统的光伏阵列故障诊断方法存在精度不高以及光伏数据利用率低等问题.针对以上问题,本文先是通过引入Levy飞行策略和步长因子动态调整策略改进麻雀搜索算法(Sparrow Search Algorithm,SSA),降低SSA算法陷入局部最优的风险,提升SSA算法的寻优能力.然后采用改进的Levy步长调整麻雀搜索算法(Levy Adjustment Sparrow Search Algorithm,LASSA)对CatBoost模型关键超参数进行寻优,提出了一种基于CatBoost并以LASSA为优化策略的光伏阵列故障诊断模型LASSA-CatBoost,以实现光伏阵列的短路、开路、老化和阴影遮挡故障的精确诊断.实验结果表明,LASSA-CatBoost模型的故障诊断准确率为99.7%,相较于优化前的CatBoost模型,准确率提高了3.6%.与现有的光伏阵列故障诊断模型相比,LASSA-CatBoost模型的准确性和稳定性更高.
关键词
光伏阵列
故障诊断
I-V特性曲线
CatBoost
Levy
adjustment
sparrow
search
algorithm
Keywords
photovoltaic array
fault diagnosis
I-V characteristic curve
CatBoost
Levy adjustment sparrow search algorithm
分类号
TM615 [电气工程—电力系统及自动化]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv8优化改进的太阳能电池片缺陷检测模型
彭自然
王思远
肖伸平
《光电工程》
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
2
一种基于CatBoost优化的光伏阵列故障诊断模型
彭自然
许怀顺
肖伸平
《电子学报》
EI
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部