大容量电池储能电站功率分配的决策变量多,且策略需考虑多个优化目标及能自动适应场景的不确定性。为此,提出了一种基于多智能体深度强化学习(multi-agent deep reinforcement learning,MADRL)的电池储能电站功率分配决策方法。首先,基...大容量电池储能电站功率分配的决策变量多,且策略需考虑多个优化目标及能自动适应场景的不确定性。为此,提出了一种基于多智能体深度强化学习(multi-agent deep reinforcement learning,MADRL)的电池储能电站功率分配决策方法。首先,基于大容量电池储能电站结构及其功率分配特性构建基于MADRL的功率分配决策框架,每个储能单元设置一个功率分配智能体,多个智能体构成合作关系;然后,设计考虑储能电站有功功率损耗、荷电状态(state of charge,SOC)一致性和健康状态损失最小优化目标的功率分配智能体模型,采用深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法去中心化训练各智能体网络参数,算法收敛后得到储能子系统充放电功率值。最后,算例验证了所提方法的有效性,能在有效提高储能子系统SOC均衡性的同时降低有功功率损耗、健康状态损失和充放电切换次数。展开更多
文摘大容量电池储能电站功率分配的决策变量多,且策略需考虑多个优化目标及能自动适应场景的不确定性。为此,提出了一种基于多智能体深度强化学习(multi-agent deep reinforcement learning,MADRL)的电池储能电站功率分配决策方法。首先,基于大容量电池储能电站结构及其功率分配特性构建基于MADRL的功率分配决策框架,每个储能单元设置一个功率分配智能体,多个智能体构成合作关系;然后,设计考虑储能电站有功功率损耗、荷电状态(state of charge,SOC)一致性和健康状态损失最小优化目标的功率分配智能体模型,采用深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法去中心化训练各智能体网络参数,算法收敛后得到储能子系统充放电功率值。最后,算例验证了所提方法的有效性,能在有效提高储能子系统SOC均衡性的同时降低有功功率损耗、健康状态损失和充放电切换次数。