-
题名基于“推荐-学习”的两阶段数据布局策略
- 1
-
-
作者
梁杨
丁长松
胡志刚
-
机构
湖南中医药大学信息科学与工程学院
湖南省中医药大数据分析实验室
中南大学计算机学院
-
出处
《南京师大学报(自然科学版)》
CAS
北大核心
2023年第4期80-90,共11页
-
基金
国家自然科学基金项目(62172442)
湖南省教育厅优秀青年项目(22B0400)
+3 种基金
湖南中医药大学校级科研基金(2021XJJJ021)
湖南省自然科学基金项目(2023JJ60124)
长沙市科技局项目(kq2202265)
湖南中医药大学学科建设“揭榜挂帅”项目(22JBZ049).
-
文摘
针对数据布局不合理导致云边协同集群服务质量下降和运营开销增加等问题,提出一种基于“推荐-学习”的两阶段数据副本管理机制.鉴于数据密集型移动应用的特点,综合考虑了云边环境下的数据访问延迟和放置代价之间的最优权衡.从理论上构建了副本放置的多目标数学模型,将决策问题描述为具有延迟和成本约束的双目标优化问题;在“推荐”阶段,设计了一个基于移动预测和反馈优化的副本推荐引擎,减少了副本创建的盲目性;在“学习”阶段,构建了一个基于异步优势行动者-评论家算法(A3C)的强化学习副本放置规则学习模型,改进了副本服务的全局性能指标.实验结果表明,基于“推荐-学习”的两阶段数据布局策略能够有效地减少等待延迟和节约成本开销,为现代云边协同系统的数据管理服务提供行之有效的解决方案,具有重要的理论意义和应用价值.
-
关键词
数据布局
服务质量
数据密集型
副本推荐
规则学习
-
Keywords
data placement
quality of service
data-intensive
replica recommendation
rule learning
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-