期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于主成分分析方向深度梯度直方图的立体视觉深度图特征提取 被引量:16
1
作者 段峰峰 王永滨 +1 位作者 杨丽芳 潘淑静 《计算机应用》 CSCD 北大核心 2016年第1期222-226,共5页
针对立体视觉深度图特征提取精确度低、复杂度高的问题,提出了一种基于主成分分析方向深度梯度直方图(PCA-HODG)的特征提取算法。首先,对双目立体视觉图像进行视差计算和深度图提取,获取高质量深度图;然后,基于预设大小窗口对所获取的... 针对立体视觉深度图特征提取精确度低、复杂度高的问题,提出了一种基于主成分分析方向深度梯度直方图(PCA-HODG)的特征提取算法。首先,对双目立体视觉图像进行视差计算和深度图提取,获取高质量深度图;然后,基于预设大小窗口对所获取的深度图进行边缘检测和梯度计算,获得区域形状直方图特征并量化;同时运用主成分分析(PCA)进行降维;最后,为实现特征获取的精确性和完整性,采用滑动窗口检测方法实现整幅深度图的特征提取,并再次降维。在特征匹配分类实验中,对于Street测试序列帧,该算法比距离样本深度特征(RSDF)算法平均分类准确率提高了1.15%,而对于Tanks、Tunnel、Temple测试序列帧,该算法比测度不变特征(GIF)算法平均分类准确率分别提高了0.69%、1.95%、0.49%;同时与方向深度直方图(HOD)、RSDF、GIF算法相比,平均运行时间分别降低了71.65%、78.05%、80.06%。实验结果表明,该算法不仅能够更精确地检测和提取深度图特征,而且通过降低维数复杂度大大减少了运行时间;同时算法具有较好的鲁棒性。 展开更多
关键词 特征提取 立体视觉 深度图 滑动窗口 降维
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部