几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能...几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能力有限,存在学习能力和泛化能力差等缺点。针对这个问题提出一种深度超圆盘分类器(Deep Hyperdisk Large Margin Classifier,DHD),该方法通过模块叠加的方式将超圆盘分类器深度化,利用特征提取公式从每层模块的输入样本中自主提取新的特征值,并将其应用在下一层模块的训练学习中。将所提方法应用到旋转机械故障诊断当中,实验结果表明该方法对故障样本的分类准确率高于其他模型算法,且对不均衡样本和强噪声背景下的故障样本均具有良好的分类能力。展开更多
基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械...基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械故障振动信号的特征值之间的相互内在关系,结合本征时间尺度分解(intrinsic time-scale decom-position,ITD),提出了一种基于本征时间尺度分解和VPMCD的机械故障诊断方法。该方法首先利用ITD方法将原始信号分解若干个PR(proper rotation,PR)分量,然后提取第一个PR分量的无量纲时域统计参数组成特征向量,最后采用VPMCD方法进行机械故障诊断。通过滚动轴承故障诊断实验验证了该方法能有效地应用于小样本多分类机械故障诊断。展开更多
针对现有的卷积、循环模型预测滚动轴承剩余使用寿命(Residual Life,RL)精度低的问题,提出一种基于改进自注意力机制的RL预测模型。首先,针对Transformer模型中自注意力机制内存占用高、信号存在噪声信息的问题,在窗口自注意力机制(Wind...针对现有的卷积、循环模型预测滚动轴承剩余使用寿命(Residual Life,RL)精度低的问题,提出一种基于改进自注意力机制的RL预测模型。首先,针对Transformer模型中自注意力机制内存占用高、信号存在噪声信息的问题,在窗口自注意力机制(Window Based Multi-head Self-attention,W-MSA)的基础上,提出概率窗口自注意力机制(Probwindow Based Multi-head Self-attention,PW-MSA);然后,针对多头信息不匹配和缺少局部信息的问题,采用Talking Head方法实现多头信息融合,并在前馈神经网络层加入深度可分离卷积提取局部信息,从而提升模型的预测精度。采用PHM2012轴承数据集将改进前后的自注意力机制模型进行比较,并和现有的先进预测模型对比,结果表明,改进自注意力机制模型可使预测精度提升13.04%。展开更多
针对旋转机械不同类型故障会使振动信号具有不同形态特征及振动信号信噪比低等特点,提出基于局部均值分解(Local Mean Decomposition,LMD)与形态谱的旋转机械故障诊断方法。其中的LMD能对旋转机械原始振动信号进行降噪处理,而形态谱则...针对旋转机械不同类型故障会使振动信号具有不同形态特征及振动信号信噪比低等特点,提出基于局部均值分解(Local Mean Decomposition,LMD)与形态谱的旋转机械故障诊断方法。其中的LMD能对旋转机械原始振动信号进行降噪处理,而形态谱则能反映振动信号的形态特征,从而能判断旋转机械的工作状态。将该方法用于转子系统故障诊断,分析结果表明,该方法能有效提取旋转机械故障振动信号的故障特征,能准确识别旋转机械的故障状态。展开更多
文摘几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能力有限,存在学习能力和泛化能力差等缺点。针对这个问题提出一种深度超圆盘分类器(Deep Hyperdisk Large Margin Classifier,DHD),该方法通过模块叠加的方式将超圆盘分类器深度化,利用特征提取公式从每层模块的输入样本中自主提取新的特征值,并将其应用在下一层模块的训练学习中。将所提方法应用到旋转机械故障诊断当中,实验结果表明该方法对故障样本的分类准确率高于其他模型算法,且对不均衡样本和强噪声背景下的故障样本均具有良好的分类能力。
文摘基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械故障振动信号的特征值之间的相互内在关系,结合本征时间尺度分解(intrinsic time-scale decom-position,ITD),提出了一种基于本征时间尺度分解和VPMCD的机械故障诊断方法。该方法首先利用ITD方法将原始信号分解若干个PR(proper rotation,PR)分量,然后提取第一个PR分量的无量纲时域统计参数组成特征向量,最后采用VPMCD方法进行机械故障诊断。通过滚动轴承故障诊断实验验证了该方法能有效地应用于小样本多分类机械故障诊断。
文摘针对现有的卷积、循环模型预测滚动轴承剩余使用寿命(Residual Life,RL)精度低的问题,提出一种基于改进自注意力机制的RL预测模型。首先,针对Transformer模型中自注意力机制内存占用高、信号存在噪声信息的问题,在窗口自注意力机制(Window Based Multi-head Self-attention,W-MSA)的基础上,提出概率窗口自注意力机制(Probwindow Based Multi-head Self-attention,PW-MSA);然后,针对多头信息不匹配和缺少局部信息的问题,采用Talking Head方法实现多头信息融合,并在前馈神经网络层加入深度可分离卷积提取局部信息,从而提升模型的预测精度。采用PHM2012轴承数据集将改进前后的自注意力机制模型进行比较,并和现有的先进预测模型对比,结果表明,改进自注意力机制模型可使预测精度提升13.04%。
文摘针对旋转机械不同类型故障会使振动信号具有不同形态特征及振动信号信噪比低等特点,提出基于局部均值分解(Local Mean Decomposition,LMD)与形态谱的旋转机械故障诊断方法。其中的LMD能对旋转机械原始振动信号进行降噪处理,而形态谱则能反映振动信号的形态特征,从而能判断旋转机械的工作状态。将该方法用于转子系统故障诊断,分析结果表明,该方法能有效提取旋转机械故障振动信号的故障特征,能准确识别旋转机械的故障状态。