期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多目标演化算法和改进概率分类的重尾时间序列预测 被引量:8
1
作者 邹小云 林文学 《计算机应用与软件》 北大核心 2020年第12期273-279,共7页
金融、通信和气象等领域中高频时间序列的边际分布均为重尾分布,而传统时间序列预测算法大多将数据流考虑为正态分布,导致传统算法无法适用于重尾分布的时间序列。针对这种情况,提出一种基于演化算法和改进概率分类器的重尾时间序列预... 金融、通信和气象等领域中高频时间序列的边际分布均为重尾分布,而传统时间序列预测算法大多将数据流考虑为正态分布,导致传统算法无法适用于重尾分布的时间序列。针对这种情况,提出一种基于演化算法和改进概率分类器的重尾时间序列预测算法。将预测提前量和预测准确率作为两个优化目标,利用演化算法对两个目标进行独立优化。对高斯过程分类进行改进,使其支持重尾时间序列的分类问题,并且优化了时间效率。实验结果表明,该算法有效地提高了时间序列的预测准确率。 展开更多
关键词 多目标优化 风险预测 重尾分布 时间序列分类 概率分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部