Pathological cardiac hypertrophy is an early and significant cardiac structural characteristic that contributes to the onset and progression of heart failure(HF).Its mainly structural feature is the abnormally enlarge...Pathological cardiac hypertrophy is an early and significant cardiac structural characteristic that contributes to the onset and progression of heart failure(HF).Its mainly structural feature is the abnormally enlarged cardiomyocyte.Effective intervention targets for abnormally enlarged cardiomyocyte remain to be identified.Previous studies have shown that the cellular shape and size can be regulated by the actin related protein 2/3(Arp2/3)complex,which is an actin-binding protein complex involved in the actin nucleation and assembly.However,the roles of the Arp2/3 complex in cardiomyocyte hypertrophy remain unknown.Here our study identifies its novel roles in the occurrence and development of cardiomyocyte hypertrophy.We found that mRNA levels of all subunits from the Arp2/3 complex are significantly upregulated(P<0.05)in the angiotensin Ⅱ(Ang Ⅱ)-induced neonatal rat primary and H9c2 cardiomyocyte hypertrophy.Further studies showed that siRNA-directed ARPC 2 silencing inhibits the reactivation of fetal genes and enlargement of cardiomyocyte area induced by Ang Ⅱ in neonatal rat primary cardiomyocytes(NRCMs)and H9c2 cells(P<0.05).In addition,the upstream activators of the Arp2/3 complex including SH3 protein interacting with Nck,90 kD(SPIN90)and Ras-related C3 botulinum toxin substrate 1(Rac1)/WASp family Verprolin-homologous protein-2(WAVE-2)are upregulated(P<0.05)in Ang Ⅱ-induced neonatal rat primary and H9c2 cardiomyocyte hypertrophy,indicating the excessive activation of the Arp2/3 complex.We further show that CK666,a specific Arp2/3 complex inhibitor,prevents the reactivation of fetal genes and the enlargement of cardiomyocyte area induced by Ang Ⅱ in NRCMs and H9c2 cells(P<0.05).Our results reveal that the Arp2/3 complex plays a crucial role in Ang Ⅱ-induced cardiomyocyte hypertrophy,which is beneficial to further studies about the molecular mechanisms by which the Arp2/3 complex regulates pathological cardiac hypertrophy.展开更多
文摘Pathological cardiac hypertrophy is an early and significant cardiac structural characteristic that contributes to the onset and progression of heart failure(HF).Its mainly structural feature is the abnormally enlarged cardiomyocyte.Effective intervention targets for abnormally enlarged cardiomyocyte remain to be identified.Previous studies have shown that the cellular shape and size can be regulated by the actin related protein 2/3(Arp2/3)complex,which is an actin-binding protein complex involved in the actin nucleation and assembly.However,the roles of the Arp2/3 complex in cardiomyocyte hypertrophy remain unknown.Here our study identifies its novel roles in the occurrence and development of cardiomyocyte hypertrophy.We found that mRNA levels of all subunits from the Arp2/3 complex are significantly upregulated(P<0.05)in the angiotensin Ⅱ(Ang Ⅱ)-induced neonatal rat primary and H9c2 cardiomyocyte hypertrophy.Further studies showed that siRNA-directed ARPC 2 silencing inhibits the reactivation of fetal genes and enlargement of cardiomyocyte area induced by Ang Ⅱ in neonatal rat primary cardiomyocytes(NRCMs)and H9c2 cells(P<0.05).In addition,the upstream activators of the Arp2/3 complex including SH3 protein interacting with Nck,90 kD(SPIN90)and Ras-related C3 botulinum toxin substrate 1(Rac1)/WASp family Verprolin-homologous protein-2(WAVE-2)are upregulated(P<0.05)in Ang Ⅱ-induced neonatal rat primary and H9c2 cardiomyocyte hypertrophy,indicating the excessive activation of the Arp2/3 complex.We further show that CK666,a specific Arp2/3 complex inhibitor,prevents the reactivation of fetal genes and the enlargement of cardiomyocyte area induced by Ang Ⅱ in NRCMs and H9c2 cells(P<0.05).Our results reveal that the Arp2/3 complex plays a crucial role in Ang Ⅱ-induced cardiomyocyte hypertrophy,which is beneficial to further studies about the molecular mechanisms by which the Arp2/3 complex regulates pathological cardiac hypertrophy.