为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图...为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图像重建。实验中进行的仿真结果表明,改进算法超分结果的峰值信噪比(PSNR)和结构相似性(SSIM)比同类型的稀疏编码超分法(SCSR)和应用在线字典学习算法的超分方法(ODLSR)均有较大幅度提升,比后者平均提升0.72 d B和0.018 7。同时,视觉上有效地消除了边缘伪影,且在处理含噪人脸图像时,具备更强的去噪能力和更好的鲁棒性。展开更多
基金Supported by the National Natural Science Foundation under Grant(11147180)Science and Technology Agency Foundation of Hubei Province under Grant(2011CDC005,D20122804)
文摘为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图像重建。实验中进行的仿真结果表明,改进算法超分结果的峰值信噪比(PSNR)和结构相似性(SSIM)比同类型的稀疏编码超分法(SCSR)和应用在线字典学习算法的超分方法(ODLSR)均有较大幅度提升,比后者平均提升0.72 d B和0.018 7。同时,视觉上有效地消除了边缘伪影,且在处理含噪人脸图像时,具备更强的去噪能力和更好的鲁棒性。
基金the financial support from National High-tech R&D Program (863 Program)of China (Grant No.2015AA043302)National Natural Science Foundation of China(Grant No.61474048)Hubei University of science and Technology Foundation under Grant No.ky14049~~