超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II...超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.展开更多
为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图...为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图像重建。实验中进行的仿真结果表明,改进算法超分结果的峰值信噪比(PSNR)和结构相似性(SSIM)比同类型的稀疏编码超分法(SCSR)和应用在线字典学习算法的超分方法(ODLSR)均有较大幅度提升,比后者平均提升0.72 d B和0.018 7。同时,视觉上有效地消除了边缘伪影,且在处理含噪人脸图像时,具备更强的去噪能力和更好的鲁棒性。展开更多
文摘超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.
文摘为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图像重建。实验中进行的仿真结果表明,改进算法超分结果的峰值信噪比(PSNR)和结构相似性(SSIM)比同类型的稀疏编码超分法(SCSR)和应用在线字典学习算法的超分方法(ODLSR)均有较大幅度提升,比后者平均提升0.72 d B和0.018 7。同时,视觉上有效地消除了边缘伪影,且在处理含噪人脸图像时,具备更强的去噪能力和更好的鲁棒性。