为提高主动配电网(active distribution network,ADN)运行经济性和用户满意度,提出一种考虑需求响应和用户满意度的ADN优化调度方法。综合考虑ADN运行过程中的购电成本、发电成本、维护成本和需求响应成本,建立了以ADN总运行成本最小为...为提高主动配电网(active distribution network,ADN)运行经济性和用户满意度,提出一种考虑需求响应和用户满意度的ADN优化调度方法。综合考虑ADN运行过程中的购电成本、发电成本、维护成本和需求响应成本,建立了以ADN总运行成本最小为目标函数的优化调度模型。利用混沌映射、莱维飞行和收敛因子非线性变化等策略对斑点鬣狗优化算法(spotted hyena optimization,SHO)进行优化,以提高斑点鬣狗算法的优化性能。采用改进斑点鬣狗优化算法(ISHO)对ADN优化调度模型进行求解,算例分析结果表明,ISHO算法的优化效果优于其他算法,2种需求响应同时参与系统调度时的ADN总运行成本最小,经济性更好。展开更多
为了提高变压器故障诊断正确率,笔者提出一种基于改进秃鹰(improved bald eagle search,IBES)算法优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。利用高斯-柯西变异算子对最优秃鹰个体进...为了提高变压器故障诊断正确率,笔者提出一种基于改进秃鹰(improved bald eagle search,IBES)算法优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。利用高斯-柯西变异算子对最优秃鹰个体进行变异,使IBES算法能够及时局部最优,提高了IBES算法的收敛精度。采用IBES算法对LSSVM的核参数和惩罚参数进行优化,建立基于IBES-LSSVM的变压器故障诊断模型,并与BES-LSSVM、GWO-SVM和GA-BP模型进行仿真实验对比。结果表明,IBES-LSSVM模型的诊断正确率为98.33%,比上述对比模型分别提高了3.50%、7.27%和9.26%,且计算时间最短,验证了该文所提变压器故障诊断方法的正确性和实用性。展开更多
为了提高电能质量扰动(power quality disturbance,PQD)识别结果的准确性,笔者提出一种基于改进灰狼优化算法(improved grey wolf optimization,IGWO)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的PQD识别方...为了提高电能质量扰动(power quality disturbance,PQD)识别结果的准确性,笔者提出一种基于改进灰狼优化算法(improved grey wolf optimization,IGWO)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的PQD识别方法。通过采用收敛因数指数调整、自适应位移和权重动态修订等措施对灰狼优化算法进行改进,得到IGWO算法;以PQD信号的9个特征量为支持向量、7种PQD类型为输出量,利用IGWO算法寻找LSSVM的最优参数,建立基于IGWO-LSSVM的PQD识别模型并进行仿真分析,且与其他模型的识别结果进行对比。结果表明,相比算例中列出的几种对比模型,IGWO-LSSVM模型识别结果的正确率更高,验证了所提PQD识别方法的有效性和实用性。展开更多
文摘为提高主动配电网(active distribution network,ADN)运行经济性和用户满意度,提出一种考虑需求响应和用户满意度的ADN优化调度方法。综合考虑ADN运行过程中的购电成本、发电成本、维护成本和需求响应成本,建立了以ADN总运行成本最小为目标函数的优化调度模型。利用混沌映射、莱维飞行和收敛因子非线性变化等策略对斑点鬣狗优化算法(spotted hyena optimization,SHO)进行优化,以提高斑点鬣狗算法的优化性能。采用改进斑点鬣狗优化算法(ISHO)对ADN优化调度模型进行求解,算例分析结果表明,ISHO算法的优化效果优于其他算法,2种需求响应同时参与系统调度时的ADN总运行成本最小,经济性更好。
文摘为了提高变压器故障诊断正确率,笔者提出一种基于改进秃鹰(improved bald eagle search,IBES)算法优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。利用高斯-柯西变异算子对最优秃鹰个体进行变异,使IBES算法能够及时局部最优,提高了IBES算法的收敛精度。采用IBES算法对LSSVM的核参数和惩罚参数进行优化,建立基于IBES-LSSVM的变压器故障诊断模型,并与BES-LSSVM、GWO-SVM和GA-BP模型进行仿真实验对比。结果表明,IBES-LSSVM模型的诊断正确率为98.33%,比上述对比模型分别提高了3.50%、7.27%和9.26%,且计算时间最短,验证了该文所提变压器故障诊断方法的正确性和实用性。
文摘为了提高电能质量扰动(power quality disturbance,PQD)识别结果的准确性,笔者提出一种基于改进灰狼优化算法(improved grey wolf optimization,IGWO)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的PQD识别方法。通过采用收敛因数指数调整、自适应位移和权重动态修订等措施对灰狼优化算法进行改进,得到IGWO算法;以PQD信号的9个特征量为支持向量、7种PQD类型为输出量,利用IGWO算法寻找LSSVM的最优参数,建立基于IGWO-LSSVM的PQD识别模型并进行仿真分析,且与其他模型的识别结果进行对比。结果表明,相比算例中列出的几种对比模型,IGWO-LSSVM模型识别结果的正确率更高,验证了所提PQD识别方法的有效性和实用性。