期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO-IBP神经网络的纯电动汽车电驱总成故障诊断
1
作者 肖伟 李泽军 +2 位作者 管天福 贺路 陈绪兵 《现代制造工程》 CSCD 北大核心 2024年第1期137-141,共5页
为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)... 为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。 展开更多
关键词 纯电动汽车 粒子群算法 BP神经网络 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部