期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
核主成分遗传算法与SVR选股模型改进
被引量:
29
1
作者
苏治
傅晓媛
《统计研究》
CSSCI
北大核心
2013年第5期54-62,共9页
量化选股一直是金融领域研究的热点。随着人工智能技术的空前发展,量化选股方法取得了很大进步。本文构建了基于核主成分遗传算法改进的支持向量回归机人工智能选股模型(KPCA-GA-SVR),并基于沪深股市股票基本面及交易数据,分别从短期和...
量化选股一直是金融领域研究的热点。随着人工智能技术的空前发展,量化选股方法取得了很大进步。本文构建了基于核主成分遗传算法改进的支持向量回归机人工智能选股模型(KPCA-GA-SVR),并基于沪深股市股票基本面及交易数据,分别从短期和中长期对其选股性能和预测精度进行了实证分析。主要结论为:①遗传算法(GA)改进的SVR较传统模型预测精度更高,且避免了过度拟合;②与采用主成分降维技术的PCA-GA-SVR模型相比,基于核主成分特征提取的KPCA-GA-SVR模型,具有更好的模型稳健性及预测准确性;③中长期内该模型的预测误差随滑窗长度的增加有降低趋势,且一年期预测精度最高;短期内不同滑窗下,一周的预测效果最佳。本研究对个人投资者的投资决策及国家宏观监控股市动态变化都具积极意义。
展开更多
关键词
核主成分分析
遗传算法
KPCA-GA-SVR模型
量化选股
在线阅读
下载PDF
职称材料
题名
核主成分遗传算法与SVR选股模型改进
被引量:
29
1
作者
苏治
傅晓媛
机构
清华大学经济管理学院应用经济学金融系
中央财经
大学
统计
学院
出处
《统计研究》
CSSCI
北大核心
2013年第5期54-62,共9页
基金
国家自然科学基金青年项目(71101157)
教育部人文社会科学研究青年基金项目(10YJC790220)
教育部博士点基金课题(20110016120001)的资助
文摘
量化选股一直是金融领域研究的热点。随着人工智能技术的空前发展,量化选股方法取得了很大进步。本文构建了基于核主成分遗传算法改进的支持向量回归机人工智能选股模型(KPCA-GA-SVR),并基于沪深股市股票基本面及交易数据,分别从短期和中长期对其选股性能和预测精度进行了实证分析。主要结论为:①遗传算法(GA)改进的SVR较传统模型预测精度更高,且避免了过度拟合;②与采用主成分降维技术的PCA-GA-SVR模型相比,基于核主成分特征提取的KPCA-GA-SVR模型,具有更好的模型稳健性及预测准确性;③中长期内该模型的预测误差随滑窗长度的增加有降低趋势,且一年期预测精度最高;短期内不同滑窗下,一周的预测效果最佳。本研究对个人投资者的投资决策及国家宏观监控股市动态变化都具积极意义。
关键词
核主成分分析
遗传算法
KPCA-GA-SVR模型
量化选股
Keywords
Kernel Principal Component Analysis
Genetic Algorithm
KPCA-GA-SVR Model
Quantitative Stock Selection
分类号
F222.3 [经济管理—国民经济]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
核主成分遗传算法与SVR选股模型改进
苏治
傅晓媛
《统计研究》
CSSCI
北大核心
2013
29
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部