期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
引入注意力机制的后交叉韧带断裂的智能辅助诊断
1
作者
李玳
王天牧
+4 位作者
张思
谢福贵
刘辛军
聂振国
刘振龙
《中国运动医学杂志》
CAS
CSCD
北大核心
2022年第11期833-840,共8页
目的:通过分析行走过程的足底压力数据,研究足底压力信息与后交叉韧带断裂的映射关系,从而实现借助足底压力对后交叉韧带断裂进行快速、准确的智能辅助诊断。方法:回顾性研究了北京大学第三医院2015至2017年收治的69名单纯左侧后交叉韧...
目的:通过分析行走过程的足底压力数据,研究足底压力信息与后交叉韧带断裂的映射关系,从而实现借助足底压力对后交叉韧带断裂进行快速、准确的智能辅助诊断。方法:回顾性研究了北京大学第三医院2015至2017年收治的69名单纯左侧后交叉韧带断裂患者、69名单纯右侧后交叉韧带患者,以及63名健康志愿者在行走过程中的足底压力数据。通过归一化等方法对足底压力信息进行预处理,然后通过引入注意力机制,采用自注意力结构,建立深度神经网络模型,实现对足底压力信息中隐式信息的特征编码与提取,并基于完整步态过程中足底压力最大值特征,对膝关节后交叉韧带断裂做出智能辅助诊断。结果:在数据处理后,得到1208段单纯左侧后交叉韧带断裂、1096段单纯右侧后交叉韧带断裂,以及964段健康人的足底压力数据,随机选择90%作为训练集,10%作为测试集。经过训练的神经网络在测试集上,对单侧后交叉韧带断裂的预测精度达到了92.02%。在测试集上,模型的曲线下面积(AUC)值达到了0.9820,显著高于使用传统卷积神经网络(CNN)方法得到的88.50%的预测精度和0.9218的AUC值。在可解释性方面,通过对训练过程的足底压力分布梯度进行可视化操作,可以观察到所提出的神经网络准确地提取了足底压力的边缘特征和重点压力特征区域。结论:借助采用了注意力机制的深度神经网络,能够有效地提取行走过程中足底压力信息的空间和时序特征,最终实现对后交叉韧带断裂的辅助智能诊断。这种基于人工智能的诊断方法具备显著的临床应用与研究价值。
展开更多
关键词
智能诊断
后交叉韧带断裂
足底压力
注意力机制
特征感知
在线阅读
下载PDF
职称材料
题名
引入注意力机制的后交叉韧带断裂的智能辅助诊断
1
作者
李玳
王天牧
张思
谢福贵
刘辛军
聂振国
刘振龙
机构
北京
大学
第三医院运动医学科
清华大学
机械工程系摩擦学国家
重点
实验室
清华大学精密/超精密制造设备与控制北京市重点实验室
出处
《中国运动医学杂志》
CAS
CSCD
北大核心
2022年第11期833-840,共8页
基金
国家自然青年基金(31900961)
2020年度北京市自然科学基金课题(7202232)
+3 种基金
2020年度北京大学第三医院创新转化基金项目(BYSYZHKC2020106)
北京大学第三医院优秀留学回国人员科研启动基金(BYSYLXHG2020007)
2020年度北京大学医学部教育教学研究项目(2020YB44)
2020~2021年度北京大学第三医院临床重点项目(BYSYZD2021012)。
文摘
目的:通过分析行走过程的足底压力数据,研究足底压力信息与后交叉韧带断裂的映射关系,从而实现借助足底压力对后交叉韧带断裂进行快速、准确的智能辅助诊断。方法:回顾性研究了北京大学第三医院2015至2017年收治的69名单纯左侧后交叉韧带断裂患者、69名单纯右侧后交叉韧带患者,以及63名健康志愿者在行走过程中的足底压力数据。通过归一化等方法对足底压力信息进行预处理,然后通过引入注意力机制,采用自注意力结构,建立深度神经网络模型,实现对足底压力信息中隐式信息的特征编码与提取,并基于完整步态过程中足底压力最大值特征,对膝关节后交叉韧带断裂做出智能辅助诊断。结果:在数据处理后,得到1208段单纯左侧后交叉韧带断裂、1096段单纯右侧后交叉韧带断裂,以及964段健康人的足底压力数据,随机选择90%作为训练集,10%作为测试集。经过训练的神经网络在测试集上,对单侧后交叉韧带断裂的预测精度达到了92.02%。在测试集上,模型的曲线下面积(AUC)值达到了0.9820,显著高于使用传统卷积神经网络(CNN)方法得到的88.50%的预测精度和0.9218的AUC值。在可解释性方面,通过对训练过程的足底压力分布梯度进行可视化操作,可以观察到所提出的神经网络准确地提取了足底压力的边缘特征和重点压力特征区域。结论:借助采用了注意力机制的深度神经网络,能够有效地提取行走过程中足底压力信息的空间和时序特征,最终实现对后交叉韧带断裂的辅助智能诊断。这种基于人工智能的诊断方法具备显著的临床应用与研究价值。
关键词
智能诊断
后交叉韧带断裂
足底压力
注意力机制
特征感知
Keywords
sintelligent diagnosis
posterior cruciate ligament deficiency
plantar pressure
attention module
deep learning
分类号
R686.5 [医药卫生—骨科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
引入注意力机制的后交叉韧带断裂的智能辅助诊断
李玳
王天牧
张思
谢福贵
刘辛军
聂振国
刘振龙
《中国运动医学杂志》
CAS
CSCD
北大核心
2022
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部