以中间相炭微球为原料,NaOH和FeCl_3分别作为活化剂和催化剂,一步活化催化法制备了一种石墨质多孔炭。将该石墨质多孔炭作为超级电容器的电极材料,研究了其在1 M LiPF_6/EC∶DEC(v/v_(=1)∶1)、1 M Et_4 NBF_4/PC(v/v_(=1)∶1)和1M[BMIM...以中间相炭微球为原料,NaOH和FeCl_3分别作为活化剂和催化剂,一步活化催化法制备了一种石墨质多孔炭。将该石墨质多孔炭作为超级电容器的电极材料,研究了其在1 M LiPF_6/EC∶DEC(v/v_(=1)∶1)、1 M Et_4 NBF_4/PC(v/v_(=1)∶1)和1M[BMIM]BF_4/AN(v/v_(=1∶)1)三种不同电解液中的电化学性能。研究表明,该石墨质多孔炭在三种电解液中均表现出优异的电化学行为,在电解液Et_4NBF_4/PC中性能最优,是一种理想的电容型材料。展开更多
通过一步水热法制备出具有三维网络结构的氢氧化镍-石墨烯复合材料(Ni(OH)2-GS)。这一独特的结构可以提供良好的离子传输通道,同时可以有效地提高氢氧化镍与电解液的接触面积和材料的导电性。结果表明,Ni(OH)2的质量分数为84%时,复合材...通过一步水热法制备出具有三维网络结构的氢氧化镍-石墨烯复合材料(Ni(OH)2-GS)。这一独特的结构可以提供良好的离子传输通道,同时可以有效地提高氢氧化镍与电解液的接触面积和材料的导电性。结果表明,Ni(OH)2的质量分数为84%时,复合材料具有最佳的电化学性能,在5 m V·s-1的扫速下比电容为1 461 F·g-1,在100 m V·s-1的扫速下比电容为682 F·g-1(容量保持率为47%),并且具有良好的循环稳定性。展开更多
文摘以中间相炭微球为原料,NaOH和FeCl_3分别作为活化剂和催化剂,一步活化催化法制备了一种石墨质多孔炭。将该石墨质多孔炭作为超级电容器的电极材料,研究了其在1 M LiPF_6/EC∶DEC(v/v_(=1)∶1)、1 M Et_4 NBF_4/PC(v/v_(=1)∶1)和1M[BMIM]BF_4/AN(v/v_(=1∶)1)三种不同电解液中的电化学性能。研究表明,该石墨质多孔炭在三种电解液中均表现出优异的电化学行为,在电解液Et_4NBF_4/PC中性能最优,是一种理想的电容型材料。
基金National Key Basic Research Program of China(2014CB932400)National Natural Science Foundation of China(U1401243)Shenzhen Basic Research Project(JCYJ20150529164918734,JCYJ20150331151358140,JCYJ20150331151358136)~~
基金National Basic Research Program of China(2014CB932403)National Science Foundation of China(51302146)+4 种基金NSAF(U1330123)Shenzhen Basic Research Project(JCYJ20130402145002430)China Postdoctoral Science Foundation(2012M520012,2013T60111)Guangdong Province Innovation R&D Team Plan(2009010025)ZDSYS(20140509172959981)~~
文摘通过一步水热法制备出具有三维网络结构的氢氧化镍-石墨烯复合材料(Ni(OH)2-GS)。这一独特的结构可以提供良好的离子传输通道,同时可以有效地提高氢氧化镍与电解液的接触面积和材料的导电性。结果表明,Ni(OH)2的质量分数为84%时,复合材料具有最佳的电化学性能,在5 m V·s-1的扫速下比电容为1 461 F·g-1,在100 m V·s-1的扫速下比电容为682 F·g-1(容量保持率为47%),并且具有良好的循环稳定性。