期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多尺度特征融合空洞卷积ResNet遥感图像建筑物分割 被引量:50
1
作者 徐胜军 欧阳朴衍 +2 位作者 郭学源 Taha Muthar Khan 段中兴 《光学精密工程》 EI CAS CSCD 北大核心 2020年第7期1588-1599,共12页
针对传统建筑物提取方法难以有效描述遥感图像细节特征,导致复杂场景下道路、树木及建筑物之间分割边界不清晰等问题,提出了一种基于多尺度特征融合空洞卷积ResNet(Multiscale-feature Fusion Dilated Convolution ResNet,MFDC-ResNet)... 针对传统建筑物提取方法难以有效描述遥感图像细节特征,导致复杂场景下道路、树木及建筑物之间分割边界不清晰等问题,提出了一种基于多尺度特征融合空洞卷积ResNet(Multiscale-feature Fusion Dilated Convolution ResNet,MFDC-ResNet)模型。首先,为了获取遥感图像建筑物更大范围的特征信息,在深度残差网络中引入空洞卷积增大特征提取的感受野,以捕捉更丰富的多尺度细节特征;其次,为了增强空洞卷积中心点对图像局部区域特征的表达能力,利用3×3卷积核提取遥感图像的中心点区域特征,引入更多的中心点空间先验信息;最后,利用空间金字塔池化模型对不同尺度空洞卷积特征进行融合,获取不同尺度的遥感图像建筑物的上下文信息。在WHU遥感图像数据集上的实验表明,平均交并比mIoU达到0.820,召回率Recall达到0.882。提出算法不仅提高了分割精度,而且有效克服了道路、树木等因素的干扰,得到了较清晰的建筑物边界。 展开更多
关键词 遥感图像 建筑物分割 残差网络 空洞卷积 多尺度特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部