期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模态深度学习的充电硐室锂电池健康状态预测
1
作者 赵应华 陈安碧 +2 位作者 张增誉 李文中 韩宇 《工矿自动化》 北大核心 2025年第5期120-128,共9页
在井下多尘、潮湿且易爆的环境中,锂电池的退化过程往往呈现非线性、多阶段的特点,传统的单一模型难以全面捕捉其动态变化。针对该问题,提出一种基于多模态深度学习的充电硐室锂电池健康状态预测方法。构建了多模态深度学习网络模型TCN−... 在井下多尘、潮湿且易爆的环境中,锂电池的退化过程往往呈现非线性、多阶段的特点,传统的单一模型难以全面捕捉其动态变化。针对该问题,提出一种基于多模态深度学习的充电硐室锂电池健康状态预测方法。构建了多模态深度学习网络模型TCN−BiLSTM−Transformer。该模型通过多层级特征提取机制实现时序信号的高效处理:时间卷积网络(TCN)采用具有指数扩展率的空洞卷积核,在保持时序完整性的同时捕获多尺度局部特征;双向长短期记忆网络(BiLSTM)通过双向门控循环单元(GRU)建立时序双向依赖关系,有效识别电池退化过程中的正反向退化特征;Transformer层则通过多头自注意力机制动态分配特征权重,实现全局退化模式的关键特征聚焦。通过锂电池工作过程中的多源传感数据(电压、电流和温度等)作为健康状态表征指标,通过Pearson相关性分析评估健康指标与电池容量的关联性,确定5个间接健康因子并作为预测模型的输入。实验结果表明,该方法的相关度均在98%以上,且均方误差、均方根误差、平均绝对误差、平均绝对百分比误差均较小。在煤矿防爆锂电池模拟工况应用验证中,该方法的相关度达99.47%,与传统方法的预测结果相比,波动幅度更小,精度更高。 展开更多
关键词 防爆锂电池 健康状态预测 多模态深度学习 时间卷积网络 双向长短期记忆网络 TCN−BiLSTM−Transformer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部