期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于i-CapsNet的宫颈癌图像识别方法研究 被引量:1
1
作者 陈晓艳 洪耿 +3 位作者 任玉蒙 张新宇 王子辰 闫潇宁 《传感技术学报》 CAS CSCD 北大核心 2020年第12期1752-1758,共7页
宫颈癌是一种严重威胁女性生命及身体健康的重大疾病,宫颈细胞涂片图像是进行癌变识别的重要诊断依据。为了提高癌变细胞的识别精度,本文在胶囊神经网络(CapsNet)的基础上,提出了一种改进的胶囊神经网络模型(improved-CapsNet,i-CapsNet... 宫颈癌是一种严重威胁女性生命及身体健康的重大疾病,宫颈细胞涂片图像是进行癌变识别的重要诊断依据。为了提高癌变细胞的识别精度,本文在胶囊神经网络(CapsNet)的基础上,提出了一种改进的胶囊神经网络模型(improved-CapsNet,i-CapsNet)。首先,针对宫颈癌涂片图像具有三维通道数据特征,构建了多维度数据输入层,并增加三维数据深度卷积层,增强图像深层特征提取能力;其次,改进了编码器中的动态路由方式,采用C-squashing非线性函数作为激活函数,更快速准确地实现胶囊模长的压缩,达到提高癌变细胞的识别精度;然后,针对Herlev公共数据集中正负样本量不平衡现象,将阿里天池宫颈液基薄层电镜扫描图像进行癌细胞图像提取及图像预处理,构建负样本数据集,提高了数据集的多样性和均衡性;最后,采用十折交叉验证方法,进行训练、验证及测试,与SVM、LeNet-5、VGG16及CapsNet模型进行效果对比,本文提出的i-CapsNet模型训练的Loss值最小,收敛到0.0074,测试的识别精度最高,达到99.2%,效果良好,验证了所提出的i-CapsNet的有效性和可行性。 展开更多
关键词 胶囊神经网络 图像识别 宫颈癌 特征提取
在线阅读 下载PDF
基于多模态图卷积神经网络的行人重识别方法 被引量:2
2
作者 何嘉明 杨巨成 +2 位作者 吴超 闫潇宁 许能华 《计算机应用》 CSCD 北大核心 2023年第7期2182-2189,共8页
针对行人重识别中行人文本属性信息未被充分利用以及文本属性之间语义联系未被挖掘的问题,提出一种基于多模态的图卷积神经网络(GCN)行人重识别方法。首先使用深度卷积神经网络(DCNN)学习行人文本属性与行人图像特征;然后借助GCN有效的... 针对行人重识别中行人文本属性信息未被充分利用以及文本属性之间语义联系未被挖掘的问题,提出一种基于多模态的图卷积神经网络(GCN)行人重识别方法。首先使用深度卷积神经网络(DCNN)学习行人文本属性与行人图像特征;然后借助GCN有效的关系挖掘能力,将文本属性特征与图像特征作为GCN的输入,通过图卷积运算来传递文本属性节点间的语义信息,从而学习文本属性间隐含的语义联系信息,并将该语义信息融入图像特征中;最后GCN输出鲁棒的行人特征。该多模态的行人重识别方法在Market-1501数据集上获得了87.6%的平均精度均值(mAP)和95.1%的Rank-1准确度;在DukeMTMC-reID数据集上获得了77.3%的mAP和88.4%的Rank-1准确度,验证了所提方法的有效性。 展开更多
关键词 行人重识别 多模态 图卷积神经网络 行人文本属性 隐含语义联系
在线阅读 下载PDF
一种改进YOLOv5s的多尺度目标检测算法 被引量:10
3
作者 茆震 任玉蒙 +2 位作者 陈晓艳 任克营 赵昱炜 《传感技术学报》 CAS CSCD 北大核心 2023年第2期267-274,共8页
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提... 针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。 展开更多
关键词 深度学习 YOLOv5s 多尺度目标检测 CBAM注意力机制 CIoU损失函数
在线阅读 下载PDF
一种雨雾背景的DeRF-YOLOv3-X目标检测方法 被引量:3
4
作者 杨坤志 闫潇宁 +2 位作者 孙健 许能华 陈晓艳 《传感技术学报》 CAS CSCD 北大核心 2022年第9期1222-1229,共8页
提出了一种新型的目标检测方法DeRF-YOLOv3-X(Derain and Defog-YOLOv3-Xception),将Xception引入YOLOv3网络以提高雨雾天气条件下行人和车辆的目标检测准确性。对于雨雾背景,分别采用残差网络和负映射结合的深度细节网络DDN和基于注意... 提出了一种新型的目标检测方法DeRF-YOLOv3-X(Derain and Defog-YOLOv3-Xception),将Xception引入YOLOv3网络以提高雨雾天气条件下行人和车辆的目标检测准确性。对于雨雾背景,分别采用残差网络和负映射结合的深度细节网络DDN和基于注意力机制的多尺度网络GridDehazeNet进行去雨去雾处理;采用Xception替换YOLOv3中Darknet-53网络,同时将回归损失函数由IoU改进为DIoU,提高特征提取能力以及框定位准确率。在公开数据集ImageNet上进行主干网络的测试;在实际场景数据集上进行YOLOv3-X网络和DeRF-YOLOv3-X网络的测试。实验结果表明,提出的DeRF-YOLOv3-X目标检测网络在雨天背景下mAP值提高了5.92%,达到54.99%;在雾天背景下,mAP值也提高了4.22%,达到49.07%。 展开更多
关键词 深度学习 复杂环境 目标检测 图像恢复
在线阅读 下载PDF
最大化中心模式和微小模式生成对抗网络
5
作者 孙志伟 马韬 +2 位作者 赵婷婷 闫潇宁 许能华 《计算机应用研究》 CSCD 北大核心 2022年第12期3815-3819,共5页
为了解决生成对抗网络(GAN)在生成图像时出现的模式崩塌问题,提出了一种最大化中心模式和微小模式损失生成对抗网络(MMMGAN)。首先,将具有相同标签的生成图像的模式定义为中心模式和微小模式,中心模式和微小模式分别代表相似模式的集合... 为了解决生成对抗网络(GAN)在生成图像时出现的模式崩塌问题,提出了一种最大化中心模式和微小模式损失生成对抗网络(MMMGAN)。首先,将具有相同标签的生成图像的模式定义为中心模式和微小模式,中心模式和微小模式分别代表相似模式的集合和学习完中心模式后可能的模式变化。其次,基于上述的定义提出最大化中心模式和微小模式损失。最后,引入该损失函数,在保证生成图像的分布逼近真实图像的前提下,绝大多数评价指标都得到了改善,提升了生成图像的多样性。拓展性的实验结果表明,提出的最大化中心模式和微小模式损失应用于两种及其以上不同类型任务中,模式崩塌得到了有效缓解。 展开更多
关键词 图像生成 中心模式 微小模式 模式崩塌 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部