期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于小麦冠层无人机高光谱影像的农田土壤含水率估算
被引量:
17
1
作者
王梦迪
何莉
+6 位作者
刘潜
李志娟
王冉
贾中甫
王敬哲
邬国峰
石铁柱
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第6期120-129,共10页
精准监测农田土壤含水率(soil moisture content,SMC)有助于提高中国水资源利用率以及农业可持续发展水平,为实现国家农业经济的稳定发展及可持续发展目标打下坚实的基础。为了探索基于无人机遥感数据进行准确、快速的土壤含水率监测的...
精准监测农田土壤含水率(soil moisture content,SMC)有助于提高中国水资源利用率以及农业可持续发展水平,为实现国家农业经济的稳定发展及可持续发展目标打下坚实的基础。为了探索基于无人机遥感数据进行准确、快速的土壤含水率监测的方法,该研究选取新疆阜康绿洲田块为研究区,使用无人机(unmanned aerial vehicle,UAV)高光谱传感器采集田块尺度小麦冠层光谱信息,进行SMC定量估算和制图。对小麦冠层光谱进行savitzky-golay(SG)平滑,利用7种不同的小波基函数(bior4.4、coif4、db4、fk14、haar、rbio3.9、sym4)对光谱信息进行连续小波变换(continuous wavelet transform,CWT)处理,并采用遗传算法(genetic algorithm, GA)对小波系数进行特征提取,最后结合偏最小二乘回归(partial least square regress,PLSR)、支持向量机(support vector machine,SVM)、人工神经网络(artificial neural network,ANN)、随机森林(radom forest,RF)以及极端梯度提升(extreme gradient boosting,XGBoost)估算SMC并实现其空间制图。结果表明:基于GA的特征波段选择方法可有效提高SMC的估算精度。使用全波段小波系数构建模型的决定系数R2在0.20~0.44之间,而使用特征小波系数的R2为0.25~0.82。与其他小波基函数相比,采用db4特征小波系数的估算精度最优,PLSR、SVM、ANN、RF和XGBoost模型估算SMC的R2分别为0.82、0.72、0.79、0.76和0.45。基于PLSR和ANN最优模型进行SMC空间制图,基于CWT和机器学习结合模型能够有效估算小田块尺度SMC。该研究基于无人机高光谱数据实现了SMC精确估算,为农田尺度SMC监测提供了有效手段。
展开更多
关键词
土壤含水率
无人机
高光谱
连续小波变换
遗传算法
在线阅读
下载PDF
职称材料
题名
基于小麦冠层无人机高光谱影像的农田土壤含水率估算
被引量:
17
1
作者
王梦迪
何莉
刘潜
李志娟
王冉
贾中甫
王敬哲
邬国峰
石铁柱
机构
深圳大学自然资源部大湾区地理环境监测重点实验室&广东省城市空间信息工程重点实验室&深圳市空间信息智能感知与服务重点实验室
深圳大学
机电与控制
工程
学院
内蒙古自治区测绘
地理
信息
中心
深圳
职业技术学院人工
智能
学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第6期120-129,共10页
基金
深圳市科创委基础研究(重点项目)(No.20210324120209027)
广东省教育厅重点领域专项项目(2020ZDZX1052)。
文摘
精准监测农田土壤含水率(soil moisture content,SMC)有助于提高中国水资源利用率以及农业可持续发展水平,为实现国家农业经济的稳定发展及可持续发展目标打下坚实的基础。为了探索基于无人机遥感数据进行准确、快速的土壤含水率监测的方法,该研究选取新疆阜康绿洲田块为研究区,使用无人机(unmanned aerial vehicle,UAV)高光谱传感器采集田块尺度小麦冠层光谱信息,进行SMC定量估算和制图。对小麦冠层光谱进行savitzky-golay(SG)平滑,利用7种不同的小波基函数(bior4.4、coif4、db4、fk14、haar、rbio3.9、sym4)对光谱信息进行连续小波变换(continuous wavelet transform,CWT)处理,并采用遗传算法(genetic algorithm, GA)对小波系数进行特征提取,最后结合偏最小二乘回归(partial least square regress,PLSR)、支持向量机(support vector machine,SVM)、人工神经网络(artificial neural network,ANN)、随机森林(radom forest,RF)以及极端梯度提升(extreme gradient boosting,XGBoost)估算SMC并实现其空间制图。结果表明:基于GA的特征波段选择方法可有效提高SMC的估算精度。使用全波段小波系数构建模型的决定系数R2在0.20~0.44之间,而使用特征小波系数的R2为0.25~0.82。与其他小波基函数相比,采用db4特征小波系数的估算精度最优,PLSR、SVM、ANN、RF和XGBoost模型估算SMC的R2分别为0.82、0.72、0.79、0.76和0.45。基于PLSR和ANN最优模型进行SMC空间制图,基于CWT和机器学习结合模型能够有效估算小田块尺度SMC。该研究基于无人机高光谱数据实现了SMC精确估算,为农田尺度SMC监测提供了有效手段。
关键词
土壤含水率
无人机
高光谱
连续小波变换
遗传算法
Keywords
soil moisture
unmanned aerial vehicle
hyperspectral images
genetic algorithm
continuous wavelet transform
分类号
S159.3 [农业科学—土壤学]
S252 [农业科学—农业机械化工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于小麦冠层无人机高光谱影像的农田土壤含水率估算
王梦迪
何莉
刘潜
李志娟
王冉
贾中甫
王敬哲
邬国峰
石铁柱
《农业工程学报》
EI
CAS
CSCD
北大核心
2023
17
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部