白鲨优化算法是受白鲨捕猎行为的启发设计的一种新元启发式算法。该算法在求解高维优化问题时,易进入早熟状态,寻优结果精度较低。为此,文章提出一种改进的白鲨优化(improved white shake optimizer,IWSO)算法。首先使用Sinusoidal混沌...白鲨优化算法是受白鲨捕猎行为的启发设计的一种新元启发式算法。该算法在求解高维优化问题时,易进入早熟状态,寻优结果精度较低。为此,文章提出一种改进的白鲨优化(improved white shake optimizer,IWSO)算法。首先使用Sinusoidal混沌映射初始化种群,以提高种群多样性及初始解在解空间的分布性;其次,引入鸟群搜索行为,赋予白鲨游动速度自适应动态惯性权重,以提高算法的收敛速度;最后,在位置更新阶段引入精英白鲨余弦变异策略,利用余弦函数的周期性特征,驱使白鲨个体在精英白鲨的有限邻域内进行精细化开发,以提高收敛精度。在23个著名基准函数和CEC2014函数上做了性能对比实验,其结果表明,IWSO算法优于6种对比算法,适合求解函数优化问题。展开更多
动态多目标优化问题具有多个相互冲突的目标,而且这些目标也受环境的影响不断变化,为了快速准确跟踪不断变化的Pareto前沿和Pareto解集,提出一种基于迁移学习的拐点预测策略(a knee points prediction strategy based on transfer learn...动态多目标优化问题具有多个相互冲突的目标,而且这些目标也受环境的影响不断变化,为了快速准确跟踪不断变化的Pareto前沿和Pareto解集,提出一种基于迁移学习的拐点预测策略(a knee points prediction strategy based on transfer learning, TKPS)。TKPS根据记忆过去时刻种群中优秀个体,使用迁移学习算法得到映射矩阵W,然后通过映射矩阵W,把当前时刻的拐点集映射到高维希尔伯特空间,从中找到下一时刻的拐点集,引导种群收敛;同时,在拐点的邻域内选出若干个伴随个体,增加种群多样性,避免种群陷入局部最优。TKPS采用8个测试函数,并与其它3个算法结果对比分析,实验结果表明TKPS算法具有更快的响应环境变化的能力。展开更多
标准正余弦算法在处理优化问题时,收敛速度不尽人意、局部搜索能力差等原因限制了正余弦算法的应用范围。针对这些问题,提出了一种自适应多策略正余弦算法(Adaptive Multi-strategy Sine Cosine Algorithm,AMSCA)。新算法以收敛速度和...标准正余弦算法在处理优化问题时,收敛速度不尽人意、局部搜索能力差等原因限制了正余弦算法的应用范围。针对这些问题,提出了一种自适应多策略正余弦算法(Adaptive Multi-strategy Sine Cosine Algorithm,AMSCA)。新算法以收敛速度和多样性两个指标作为依据,利用赌轮选择机制选用包括正余弦算法在内的四种更新策略的其中一种作为下一代更新的策略,结合反向学习策略,以提高个体寻优的速度或避免算法陷入局部最优解。通过18个经典基准函数实验,对新算法与其他智能进化算法的测试结果进行比较分析,新算法的优化能力强于对比算法。展开更多
文摘白鲨优化算法是受白鲨捕猎行为的启发设计的一种新元启发式算法。该算法在求解高维优化问题时,易进入早熟状态,寻优结果精度较低。为此,文章提出一种改进的白鲨优化(improved white shake optimizer,IWSO)算法。首先使用Sinusoidal混沌映射初始化种群,以提高种群多样性及初始解在解空间的分布性;其次,引入鸟群搜索行为,赋予白鲨游动速度自适应动态惯性权重,以提高算法的收敛速度;最后,在位置更新阶段引入精英白鲨余弦变异策略,利用余弦函数的周期性特征,驱使白鲨个体在精英白鲨的有限邻域内进行精细化开发,以提高收敛精度。在23个著名基准函数和CEC2014函数上做了性能对比实验,其结果表明,IWSO算法优于6种对比算法,适合求解函数优化问题。
文摘动态多目标优化问题具有多个相互冲突的目标,而且这些目标也受环境的影响不断变化,为了快速准确跟踪不断变化的Pareto前沿和Pareto解集,提出一种基于迁移学习的拐点预测策略(a knee points prediction strategy based on transfer learning, TKPS)。TKPS根据记忆过去时刻种群中优秀个体,使用迁移学习算法得到映射矩阵W,然后通过映射矩阵W,把当前时刻的拐点集映射到高维希尔伯特空间,从中找到下一时刻的拐点集,引导种群收敛;同时,在拐点的邻域内选出若干个伴随个体,增加种群多样性,避免种群陷入局部最优。TKPS采用8个测试函数,并与其它3个算法结果对比分析,实验结果表明TKPS算法具有更快的响应环境变化的能力。
文摘标准正余弦算法在处理优化问题时,收敛速度不尽人意、局部搜索能力差等原因限制了正余弦算法的应用范围。针对这些问题,提出了一种自适应多策略正余弦算法(Adaptive Multi-strategy Sine Cosine Algorithm,AMSCA)。新算法以收敛速度和多样性两个指标作为依据,利用赌轮选择机制选用包括正余弦算法在内的四种更新策略的其中一种作为下一代更新的策略,结合反向学习策略,以提高个体寻优的速度或避免算法陷入局部最优解。通过18个经典基准函数实验,对新算法与其他智能进化算法的测试结果进行比较分析,新算法的优化能力强于对比算法。