期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
红外多目标跟踪的稀疏多假设匹配和模型优化
1
作者 徐长琦 王好贤 +1 位作者 王军 周志权 《红外与激光工程》 北大核心 2025年第2期216-228,共13页
伴随海洋经济的不断发展,目标跟踪作为海洋安全的重要部分,需要兼顾高实时性与高准确性。针对多目标跟踪过程中常出现模糊匹配错误以及深度学习目标检测器推理速度慢的问题,提出了一种基于稀疏多假设匹配的轻量化红外多目标跟踪算法。首... 伴随海洋经济的不断发展,目标跟踪作为海洋安全的重要部分,需要兼顾高实时性与高准确性。针对多目标跟踪过程中常出现模糊匹配错误以及深度学习目标检测器推理速度慢的问题,提出了一种基于稀疏多假设匹配的轻量化红外多目标跟踪算法。首先,从定量角度分析费用矩阵的匹配过程,结合深度级联匹配算法与多假设跟踪算法,设计并实现了稀疏多假设匹配算法,在稀疏化费用矩阵、减少匹配过程计算量的同时,提高了费用矩阵匹配精度;其次,针对深度学习模型参数多、存在冗余参数的问题,采用层自适应剪枝算法对YOLOv8s模型进行剪枝,在不牺牲模型准确度的同时,减少模型的参数量与浮点运算量,使得YOLOv8s模型能够在更广泛的场景下部署。在视频序列跟踪实验中,MOTA指标较其他算法提高了0.2%~1.2%,证明稀疏多假设匹配算法提升了目标跟踪效果;在剪枝实验中,相比于原模型,剪枝后的YOLOv8s模型的平均精度(mAP@50)提升了0.1%,参数量下降为42.0%,浮点运算量下降为66.4%,实现了推理准确度与推理速度的提升。 展开更多
关键词 红外多目标跟踪 稀疏多假设匹配 伪深度信息 层自适应幅度剪枝
在线阅读 下载PDF
基于深度学习的水声信道联合多分支合并与均衡算法 被引量:1
2
作者 刘志勇 金子皓 +3 位作者 杨洪娟 刘彪 唐新丰 李博 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2004-2010,共7页
为了更好地解决水声信道中的衰落及严重码间干扰问题,该文提出一种基于深度学习的联合多分支合并与均衡算法。该算法借助深度学习网络的非线性拟合能力,联合实现了多分支合并和均衡。在算法实现中,合并与均衡并非相互独立,而是基于深度... 为了更好地解决水声信道中的衰落及严重码间干扰问题,该文提出一种基于深度学习的联合多分支合并与均衡算法。该算法借助深度学习网络的非线性拟合能力,联合实现了多分支合并和均衡。在算法实现中,合并与均衡并非相互独立,而是基于深度学习网络的总输出计算出总误差,以总误差对网络参数实现联合调整,数据集则基于统计水声信道模型进行构建。仿真结果表明,相较于已有算法,所提算法能获得更快的收敛速度和更好的误码率性能,使得其能更好地适应水声信道。 展开更多
关键词 水声通信 深度学习 水声信道 联合多分支合并与均衡
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部