在实际监测任务中,及时有效地识别飞行模式至关重要。然而,现有的飞行模式识别方法主观性强、模式单一,限制了在复杂情况下的飞行监控能力,在实际应用中有局限性,进而导致模式边界定位不精确、识别精度低。为此提出一种基于敏感边界和...在实际监测任务中,及时有效地识别飞行模式至关重要。然而,现有的飞行模式识别方法主观性强、模式单一,限制了在复杂情况下的飞行监控能力,在实际应用中有局限性,进而导致模式边界定位不精确、识别精度低。为此提出一种基于敏感边界和长飞行序列的飞行模式智能识别方法(Intelligent Flight Pattern Recognition Method for Sensitive Boundaries and Long Flight Sequences, IFPRM-SBLFS),以对飞行模式进行智能识别。为了更好地探索多模式飞行参数的空间关系,设计自适应图嵌入,针对不同持续时间的飞行模式提出去噪深度多尺度自动编码器,以及用于减轻模型损失的分类加权焦点损失和回归联合时空交集损失。为验证所提方法的优越性,采集多架民用航班的真实参数,涵盖11种飞行模式,通过人工标注构建飞行模式数据集。仿真计算结果表明:新模型能够在连续飞行架次中自动区分不同的飞行模式,并准确提取模式边界,识别准确率达到了99.07%,且无需任何预处理或后处理;新的智能识别方法可以有效提高精确度和敏感边界的飞行模式识别效果。展开更多
为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD...为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD)的无监督异常检测方法。利用LSTM网络提取可变长度飞行轨迹的关键特征,并将其转化为固定长度的序列表示;通过SVDD算法构建多维超球分类器,对正常飞行轨迹进行建模,从而识别潜在异常轨迹。为进一步提升模型性能,引入基于梯度的优化算法(Gradient-Based training algorithm, GB),实现LSTM与SVDD参数的联合训练,大幅度提高检测精度和计算效率。仿真实验结果表明,新提出的基于梯度优化的长短时记忆网络和支持向量数据描述模型(Long Short-Term Memory network and Support Vector Data Description model based on Gradient-Based training algorithm optimization, LSTM-GBSVDD)的飞行轨迹异常检测方法在处理复杂、多变的飞行轨迹异常检测任务中表现出较好的有效性和优越性,有较强的应用前景。展开更多
剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长...剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder, BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。展开更多
文摘在实际监测任务中,及时有效地识别飞行模式至关重要。然而,现有的飞行模式识别方法主观性强、模式单一,限制了在复杂情况下的飞行监控能力,在实际应用中有局限性,进而导致模式边界定位不精确、识别精度低。为此提出一种基于敏感边界和长飞行序列的飞行模式智能识别方法(Intelligent Flight Pattern Recognition Method for Sensitive Boundaries and Long Flight Sequences, IFPRM-SBLFS),以对飞行模式进行智能识别。为了更好地探索多模式飞行参数的空间关系,设计自适应图嵌入,针对不同持续时间的飞行模式提出去噪深度多尺度自动编码器,以及用于减轻模型损失的分类加权焦点损失和回归联合时空交集损失。为验证所提方法的优越性,采集多架民用航班的真实参数,涵盖11种飞行模式,通过人工标注构建飞行模式数据集。仿真计算结果表明:新模型能够在连续飞行架次中自动区分不同的飞行模式,并准确提取模式边界,识别准确率达到了99.07%,且无需任何预处理或后处理;新的智能识别方法可以有效提高精确度和敏感边界的飞行模式识别效果。
文摘为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD)的无监督异常检测方法。利用LSTM网络提取可变长度飞行轨迹的关键特征,并将其转化为固定长度的序列表示;通过SVDD算法构建多维超球分类器,对正常飞行轨迹进行建模,从而识别潜在异常轨迹。为进一步提升模型性能,引入基于梯度的优化算法(Gradient-Based training algorithm, GB),实现LSTM与SVDD参数的联合训练,大幅度提高检测精度和计算效率。仿真实验结果表明,新提出的基于梯度优化的长短时记忆网络和支持向量数据描述模型(Long Short-Term Memory network and Support Vector Data Description model based on Gradient-Based training algorithm optimization, LSTM-GBSVDD)的飞行轨迹异常检测方法在处理复杂、多变的飞行轨迹异常检测任务中表现出较好的有效性和优越性,有较强的应用前景。
文摘剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder, BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。