针对长时间充放电后锂电池模组之间荷电状态(state of charge,SOC)不一致的问题,传统集中式均衡电路存在均衡速度过低的缺陷,以对称式开关阵列、Boost变换器与LC准谐振电路作为均衡主电路,提出了一种基于连续集模型预测控制(continuous ...针对长时间充放电后锂电池模组之间荷电状态(state of charge,SOC)不一致的问题,传统集中式均衡电路存在均衡速度过低的缺陷,以对称式开关阵列、Boost变换器与LC准谐振电路作为均衡主电路,提出了一种基于连续集模型预测控制(continuous control set model predictive control,CCS-MPC)的均衡控制策略。首先,对均衡系统进行建模,构建离散状态空间方程;然后,根据状态方程设计多步模型预测算法,并以SOC预测值和参考值、变换器开关管当前输入和上一时刻输入之间的误差作为价值函数;最后,对价值函数进行二次规划,在线求解出一组控制最优解,并应用于均衡系统,通过动态调整占空比以控制均衡电流的大小。相较于单步预测,多步预测需要考虑被控量在多个周期内保持最优,可以保证在每个均衡周期内均衡器都能输出最优的均衡电流,有效防止均衡器失稳。仿真结果表明,所提模型预测算法实现了各电池组SOC一致,保证了均衡电流的稳定输出,相比常规PI算法缩短了17%的均衡时间。展开更多
文摘针对长时间充放电后锂电池模组之间荷电状态(state of charge,SOC)不一致的问题,传统集中式均衡电路存在均衡速度过低的缺陷,以对称式开关阵列、Boost变换器与LC准谐振电路作为均衡主电路,提出了一种基于连续集模型预测控制(continuous control set model predictive control,CCS-MPC)的均衡控制策略。首先,对均衡系统进行建模,构建离散状态空间方程;然后,根据状态方程设计多步模型预测算法,并以SOC预测值和参考值、变换器开关管当前输入和上一时刻输入之间的误差作为价值函数;最后,对价值函数进行二次规划,在线求解出一组控制最优解,并应用于均衡系统,通过动态调整占空比以控制均衡电流的大小。相较于单步预测,多步预测需要考虑被控量在多个周期内保持最优,可以保证在每个均衡周期内均衡器都能输出最优的均衡电流,有效防止均衡器失稳。仿真结果表明,所提模型预测算法实现了各电池组SOC一致,保证了均衡电流的稳定输出,相比常规PI算法缩短了17%的均衡时间。