期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合隶属度函数的自适应惯性权重模式的粒子群优化算法
被引量:
10
1
作者
毛焕宇
王文东
《计算机应用与软件》
北大核心
2020年第1期277-283,共7页
粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算...
粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算法PSO-AIWA,有效合理地均衡PSO的全局搜索和局部搜索能力。根据当前粒子与全局最优粒子间的差异,算法可以通过基于粒子间距的隶属度函数动态调整粒子的惯性权重,使得每次迭代中,粒子可以根据当前状态在每个维度上的搜索空间内选择合适的惯性权重进行状态更新。在6种基准函数下进行了算法的性能测试,结果表明,与随机式惯性权重PSO算法与线性递减惯性权重PSO-LDIW算法相比,该算法可以获得更好的粒子分布和收敛性。
展开更多
关键词
粒子群优化
惯性权重
收敛性
自适应调整
在线阅读
下载PDF
职称材料
题名
融合隶属度函数的自适应惯性权重模式的粒子群优化算法
被引量:
10
1
作者
毛焕宇
王文东
机构
浙江纺织服装职业技术学院信息媒体学院
延安大学数学与计算机科学
学院
出处
《计算机应用与软件》
北大核心
2020年第1期277-283,共7页
基金
延安市科学技术研究发展计划项目(2018KG-02)
文摘
粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算法PSO-AIWA,有效合理地均衡PSO的全局搜索和局部搜索能力。根据当前粒子与全局最优粒子间的差异,算法可以通过基于粒子间距的隶属度函数动态调整粒子的惯性权重,使得每次迭代中,粒子可以根据当前状态在每个维度上的搜索空间内选择合适的惯性权重进行状态更新。在6种基准函数下进行了算法的性能测试,结果表明,与随机式惯性权重PSO算法与线性递减惯性权重PSO-LDIW算法相比,该算法可以获得更好的粒子分布和收敛性。
关键词
粒子群优化
惯性权重
收敛性
自适应调整
Keywords
Particle swarm optimization
Inertia weight
Convergence
Adaptive adjusting
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合隶属度函数的自适应惯性权重模式的粒子群优化算法
毛焕宇
王文东
《计算机应用与软件》
北大核心
2020
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部