期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向边缘智能的两阶段对抗知识迁移方法 被引量:5
1
作者 钱亚冠 马骏 +4 位作者 何念念 王滨 顾钊铨 凌祥 Wassim Swaileh 《软件学报》 EI CSCD 北大核心 2022年第12期4504-4516,共13页
对抗样本的出现,对深度学习的鲁棒性提出了挑战.随着边缘智能的兴起,如何在计算资源有限的边缘设备上部署鲁棒的精简深度学习模型,是一个有待解决的问题.由于精简模型无法通过常规的对抗训练获得良好的鲁棒性,提出两阶段对抗知识迁移的... 对抗样本的出现,对深度学习的鲁棒性提出了挑战.随着边缘智能的兴起,如何在计算资源有限的边缘设备上部署鲁棒的精简深度学习模型,是一个有待解决的问题.由于精简模型无法通过常规的对抗训练获得良好的鲁棒性,提出两阶段对抗知识迁移的方法,先将对抗知识从数据向模型迁移,然后将复杂模型获得的对抗知识向精简模型迁移.对抗知识以对抗样本的数据形式蕴含,或以模型决策边界的形式蕴含.具体而言,利用云平台上的GPU集群对复杂模型进行对抗训练,实现对抗知识从数据向模型迁移;利用改进的蒸馏技术将对抗知识进一步从复杂模型向精简模型的迁移,最后提升边缘设备上精简模型的鲁棒性.在MNIST,CIFAR-10和CIFAR-100这3个数据集上进行验证,实验结果表明:提出的这种两阶段对抗知识迁移方法可以有效地提升精简模型的性能和鲁棒性,同时加快训练过程的收敛性. 展开更多
关键词 对抗样本 对抗训练 知识迁移 知识蒸馏
在线阅读 下载PDF
针对深度神经网络模型指纹检测的逃避算法 被引量:1
2
作者 钱亚冠 何念念 +5 位作者 郭艳凯 王滨 李晖 顾钊铨 张旭鸿 吴春明 《计算机研究与发展》 EI CSCD 北大核心 2021年第5期1106-1117,共12页
随着深度神经网络在不同领域的成功应用,模型的知识产权保护成为了一个备受关注的问题.由于深度神经网络的训练需要大量计算资源、人力成本和时间成本,攻击者通过窃取目标模型参数,可低成本地构建本地替代模型.为保护模型所有者的知识产... 随着深度神经网络在不同领域的成功应用,模型的知识产权保护成为了一个备受关注的问题.由于深度神经网络的训练需要大量计算资源、人力成本和时间成本,攻击者通过窃取目标模型参数,可低成本地构建本地替代模型.为保护模型所有者的知识产权,最近提出的模型指纹比对方法,利用模型决策边界附近的指纹样本及其指纹查验模型是否被窃取,具有不影响模型自身性能的优点.针对这类基于模型指纹的保护策略,提出了一种逃避算法,可以成功绕开这类保护策略,揭示了模型指纹保护的脆弱性.该逃避算法的核心是设计了一个指纹样本检测器——Fingerprint-GAN.利用生成对抗网络(generative adversarial network,GAN)原理,学习正常样本在隐空间的特征表示及其分布,根据指纹样本与正常样本在隐空间中特征表示的差异性,检测到指纹样本,并向目标模型所有者返回有别于预测的标签,使模型所有者的指纹比对方法失效.最后通过CIFAR-10,CIFAR-100数据集评估了逃避算法的性能,实验结果表明:算法对指纹样本的检测率分别可达95%和94%,而模型所有者的指纹比对成功率最高仅为19%,证明了模型指纹比对保护方法的不可靠性. 展开更多
关键词 知识产权保护 模型窃取 模型指纹 生成对抗网络 逃避算法
在线阅读 下载PDF
一种应用于文本分类的段落向量正向激励方法
3
作者 钱亚冠 方科彬 +4 位作者 康明 顾钊铨 潘俊 王滨 Wassim Swaileh 《中文信息学报》 CSCD 北大核心 2023年第7期51-60,共10页
文本分类广泛应用于文档检索、网络搜索等领域,其中文本的向量化表示对于分类性能的提高具有重要的影响。在将变长文本表示成定长向量时,传统的段落向量化算法Doc2Vec忽视了该算法每轮训练的次数与段落长度高度相关的问题,以及长段落包... 文本分类广泛应用于文档检索、网络搜索等领域,其中文本的向量化表示对于分类性能的提高具有重要的影响。在将变长文本表示成定长向量时,传统的段落向量化算法Doc2Vec忽视了该算法每轮训练的次数与段落长度高度相关的问题,以及长段落包含短段落信息的情况,限制了分类模型准确率的进一步提升。针对该问题,该文提出一种应用于文本分类的基于段落向量正向激励的方法。首先,根据中位数划分长、短段落向量,然后在分类模型输入过程中提升长段落向量的权重,实现提高模型分类准确率的目的。在Stanford Sentiment Treebank、IMDB和Amazon Reviews三个数据集上的实验结果表明,通过选择适当的激励系数,采用段落向量正向激励的分类模型可以获得更高的分类准确率。 展开更多
关键词 正向激励 段落向量 文本分类
在线阅读 下载PDF
面向人脸识别的口罩区域修复算法 被引量:4
4
作者 李悦 钱亚冠 +3 位作者 关晓惠 李蔚 王滨 顾钊铨 《电信科学》 2021年第8期66-76,共11页
遮挡下的人脸识别一直是现实场景中的一个难题。特别是新冠肺炎疫情爆发后,在机场、车站等需要鉴别入场人员身份信息的场所,口罩遮挡使得可供识别的面部特征大幅减少,原有的人脸识别算法准确率随之下降。对去除口罩遮挡进行了研究,提出... 遮挡下的人脸识别一直是现实场景中的一个难题。特别是新冠肺炎疫情爆发后,在机场、车站等需要鉴别入场人员身份信息的场所,口罩遮挡使得可供识别的面部特征大幅减少,原有的人脸识别算法准确率随之下降。对去除口罩遮挡进行了研究,提出了一个新的框架修复人脸,利用边缘生成网络还原遮挡区域的边缘,在此基础上再利用区域填充网络恢复被遮挡的人脸,同时保留身份信息。为提升模型的性能,提出空间加权对抗损失和身份一致性损失训练上述网络,并利用关键点信息,构建了两个戴口罩的人脸数据集。实验结果表明,恢复被口罩遮挡的人脸的图像使人脸识别算法ArcFace的准确率达到98.39%,比直接采用ArcFace识别遮挡人脸提升了4.13%的准确率。 展开更多
关键词 口罩遮挡 人脸识别 边缘生成网络 区域填充网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部