针对化工连续生产过程的时序性及非线性等特征,提出一种新的基于数据驱动的化工过程故障诊断方法:ISOMAP-LDA。首先实行流形学习算法ISOMAP,在保持量测数据几何结构特性下完成非线性降维,然后基于提取的嵌入变量张成的低维空间,选用线...针对化工连续生产过程的时序性及非线性等特征,提出一种新的基于数据驱动的化工过程故障诊断方法:ISOMAP-LDA。首先实行流形学习算法ISOMAP,在保持量测数据几何结构特性下完成非线性降维,然后基于提取的嵌入变量张成的低维空间,选用线性判别分析(LDA)构造故障模式类的判别函数,负责各采样个体故障类型的判定。将该方法用于仿真化工Tennessee East man过程的故障诊断,结果表明,ISOMAP-LDA方法不仅拥有较高的故障诊断能力,而且取得采样在低维空间的可视化表示。展开更多
采用全谱建立多元校正模型时,通常计算量大,模型不够稳健,而且模型的预测精度往往也不能达到最优。文章介绍一种新的波长选择方法:采用连续投影算法(successive projections algorithm),并将其集成偏最小二乘(partial least squares)多...采用全谱建立多元校正模型时,通常计算量大,模型不够稳健,而且模型的预测精度往往也不能达到最优。文章介绍一种新的波长选择方法:采用连续投影算法(successive projections algorithm),并将其集成偏最小二乘(partial least squares)多变量校正技术构成SPA-PLS方法,用于谷物小麦近红外光谱波长优化选择及其与水分含量的定量分析。结果表明:在经SPA算法后,光谱波数可削减97.72%,后继的定量校正模型结构得到显著简化,模型的稳健性也大大增强;同时,被选取的波长物理意义明确,模型的解释能力增强,而模型的预测性能也与GA-PLS方法相当。展开更多
文摘针对化工连续生产过程的时序性及非线性等特征,提出一种新的基于数据驱动的化工过程故障诊断方法:ISOMAP-LDA。首先实行流形学习算法ISOMAP,在保持量测数据几何结构特性下完成非线性降维,然后基于提取的嵌入变量张成的低维空间,选用线性判别分析(LDA)构造故障模式类的判别函数,负责各采样个体故障类型的判定。将该方法用于仿真化工Tennessee East man过程的故障诊断,结果表明,ISOMAP-LDA方法不仅拥有较高的故障诊断能力,而且取得采样在低维空间的可视化表示。
文摘采用全谱建立多元校正模型时,通常计算量大,模型不够稳健,而且模型的预测精度往往也不能达到最优。文章介绍一种新的波长选择方法:采用连续投影算法(successive projections algorithm),并将其集成偏最小二乘(partial least squares)多变量校正技术构成SPA-PLS方法,用于谷物小麦近红外光谱波长优化选择及其与水分含量的定量分析。结果表明:在经SPA算法后,光谱波数可削减97.72%,后继的定量校正模型结构得到显著简化,模型的稳健性也大大增强;同时,被选取的波长物理意义明确,模型的解释能力增强,而模型的预测性能也与GA-PLS方法相当。