共空间模式侧重提取信号的空间信息,是脑电信号中滤波和特征提取的常用算法之一。然而脑电信号的时间窗、频带和通道的选择都会影响其分类结果。为了提高CSP特征的表征能力,采用了基于相关系数的脑电通道选择方法,结合时频共空间模式提...共空间模式侧重提取信号的空间信息,是脑电信号中滤波和特征提取的常用算法之一。然而脑电信号的时间窗、频带和通道的选择都会影响其分类结果。为了提高CSP特征的表征能力,采用了基于相关系数的脑电通道选择方法,结合时频共空间模式提取特征,提出了通道选择共时频空间模式(CS-CTFSP)新框架。首先利用通道间相关性,在主通道的基础上筛选合适的通道集合;并利用时频共空间模式从每个时间窗口的多个子频带中提取CSP特征;接着引入一种子频带筛选方法去除无区分能力的频带单元后,结合LASSO提取稀疏特征;最后采用LDA分类器对脑电信号进行分类。在对BCI Competition III Dataset IVa和BCI Competition IV Dataset I二分类运动想象任务的分类实验中,平均分类精度达到91.10%和87.92%,并与其他运动想象方法进行了比较,验证了本文方法的有效性。展开更多
源自中枢神经系统活动的脑电信号具有不易伪装性而被广泛应用于情感识别领域,但非稳态及微弱等特性导致其存在个体差异性。为适应不同被试之间的数据分布差异,迁移学习被引入脑电情感识别领域。但现有方法一方面未实现域适应与标记估计...源自中枢神经系统活动的脑电信号具有不易伪装性而被广泛应用于情感识别领域,但非稳态及微弱等特性导致其存在个体差异性。为适应不同被试之间的数据分布差异,迁移学习被引入脑电情感识别领域。但现有方法一方面未实现域适应与标记估计的有效协同,另一方面仅关注识别精度与数据分布忽略了共享子空间的属性发掘。针对上述问题,本研究提出一种联合双映射域适应与图半监督标签估计的脑电情感状态识别方法。通过在SEED-IV情感数据集进行跨被试情感识别效果验证。该数据集为15名受试者在3个不同时段(Session1,Session2,Session3)播放具有明显情感倾向的影片进行脑电数据采集。结果显示,所提出的方法对SEED-IV中3个时段数据的平均识别精度(77.7%、78.5%、79.6%)均优于现有多种迁移模型,较经典的联合域适应(JDA)方法的平均识别精度有大幅提升(Session2:53.7%vs 78.5%);较新近提出的模型也有最低8.9%(Session2 vs MEKT)的精度提升。此外,通过特征重要性的角度对共享子空间蕴含的脑电情感激活模式进行发掘,并结合频段权重平均结果显示,相较于其他4个频段γ频段具有较高的重要性,并通过单向方差分析验证了与其余4个频段的显著性差异(P<0.05);脑地形图呈现的结果发现,(中央)顶叶脑区权重高于其他脑区。所进行的研究对于脑电情感激活模式的学习分析提供了参考。展开更多
文摘共空间模式侧重提取信号的空间信息,是脑电信号中滤波和特征提取的常用算法之一。然而脑电信号的时间窗、频带和通道的选择都会影响其分类结果。为了提高CSP特征的表征能力,采用了基于相关系数的脑电通道选择方法,结合时频共空间模式提取特征,提出了通道选择共时频空间模式(CS-CTFSP)新框架。首先利用通道间相关性,在主通道的基础上筛选合适的通道集合;并利用时频共空间模式从每个时间窗口的多个子频带中提取CSP特征;接着引入一种子频带筛选方法去除无区分能力的频带单元后,结合LASSO提取稀疏特征;最后采用LDA分类器对脑电信号进行分类。在对BCI Competition III Dataset IVa和BCI Competition IV Dataset I二分类运动想象任务的分类实验中,平均分类精度达到91.10%和87.92%,并与其他运动想象方法进行了比较,验证了本文方法的有效性。
文摘源自中枢神经系统活动的脑电信号具有不易伪装性而被广泛应用于情感识别领域,但非稳态及微弱等特性导致其存在个体差异性。为适应不同被试之间的数据分布差异,迁移学习被引入脑电情感识别领域。但现有方法一方面未实现域适应与标记估计的有效协同,另一方面仅关注识别精度与数据分布忽略了共享子空间的属性发掘。针对上述问题,本研究提出一种联合双映射域适应与图半监督标签估计的脑电情感状态识别方法。通过在SEED-IV情感数据集进行跨被试情感识别效果验证。该数据集为15名受试者在3个不同时段(Session1,Session2,Session3)播放具有明显情感倾向的影片进行脑电数据采集。结果显示,所提出的方法对SEED-IV中3个时段数据的平均识别精度(77.7%、78.5%、79.6%)均优于现有多种迁移模型,较经典的联合域适应(JDA)方法的平均识别精度有大幅提升(Session2:53.7%vs 78.5%);较新近提出的模型也有最低8.9%(Session2 vs MEKT)的精度提升。此外,通过特征重要性的角度对共享子空间蕴含的脑电情感激活模式进行发掘,并结合频段权重平均结果显示,相较于其他4个频段γ频段具有较高的重要性,并通过单向方差分析验证了与其余4个频段的显著性差异(P<0.05);脑地形图呈现的结果发现,(中央)顶叶脑区权重高于其他脑区。所进行的研究对于脑电情感激活模式的学习分析提供了参考。