近年来,全卷积神经网络有效提升了语义分割任务的准确率.然而,由于室内环境的复杂性,室内场景语义分割仍然是一个具有挑战性的问题.随着深度传感器的出现,人们开始考虑利用深度信息提升语义分割效果.以往的研究大多简单地使用等权值的...近年来,全卷积神经网络有效提升了语义分割任务的准确率.然而,由于室内环境的复杂性,室内场景语义分割仍然是一个具有挑战性的问题.随着深度传感器的出现,人们开始考虑利用深度信息提升语义分割效果.以往的研究大多简单地使用等权值的拼接或求和操作来融合RGB特征和深度特征,未能充分利用RGB特征与深度特征之间的互补信息.本文提出一种基于注意力感知和语义感知的网络模型ASNet(Attention-aware and Semantic-aware Network).通过引入注意力感知多模态融合模块和语义感知多模态融合模块,有效地融合多层次的RGB特征和深度特征.其中,在注意力感知多模态融合模块中,本文设计了一种跨模态注意力机制,RGB特征和深度特征利用互补信息相互指导和优化,从而提取富含空间位置信息的特征表示.另外,语义感知多模态融合模块通过整合语义相关的RGB特征通道和深度特征通道,建模多模态特征之间的语义依赖关系,提取更精确的语义特征表示.本文将这两个多模态融合模块整合到一个带有跳跃连接的双分支编码-解码网络模型中.同时,网络在训练时采用深层监督策略,在多个解码层上进行监督学习.在公开数据集上的实验结果表明,本文算法优于现有的RGB-D图像语义分割算法,在平均精度和平均交并比上分别比近期算法提高了1.9%和1.2%.展开更多
目的:基于三种机器学习算法——支持向量机(support vector machine,SVM)、分类回归树(classification and regression tree,CART)和随机森林(random forest,RF),构建重症监护室(intensive care unit,ICU)患者的ICU入住时长(length of I...目的:基于三种机器学习算法——支持向量机(support vector machine,SVM)、分类回归树(classification and regression tree,CART)和随机森林(random forest,RF),构建重症监护室(intensive care unit,ICU)患者的ICU入住时长(length of ICU stay,LOS-ICU)分类预测模型,并与传统的定制版简化急性生理功能评分Ⅱ(simplified acute physiology scoreⅡ,SAPS-Ⅱ)模型进行比较。方法:使用美国大型重症医疗数据库(medical information mart for intensive careⅢ,MIMIC-Ⅲ),以ICU患者是否发生超长LOS-ICU(prolonged LOS-ICU,pLOS-ICU)作为结局指标,构建定制版SAPS-Ⅱ、SVM、CART和RF模型,使用递归特征消除法进行特征选择,基于五折交叉验证找出最佳预测模型。模型的预测性能评价指标包括Brier评分、受试者工作特征(receiver operation characteristic,ROC)曲线下面积(area under the ROC curve,AUROC)和估计校准度指数(estimated calibration index,ECI),模型性能指标之间的比较使用双侧t检验。使用本研究中预测性能最好的模型识别出来的各预测变量重要性排序结果,给出重要性排序前五位的预测变量。结果:最终共纳入40200例ICU患者,发生pLOS-ICU的患者23.7%。其中,男性患者57.6%,患者平均年龄为(61.9±16.5)岁。五折交叉验证结果显示,相比于定制版SAPS-Ⅱ模型,三种机器学习模型的预测性能在各个指标上均有明显提升,且差异均具有统计学意义(P<0.01)。其中,RF模型在综合预测性能、区分度与校准度三个方面均表现最优,其Brier评分、AUROC和ECI分别为0.145、0.770和7.259。校准曲线结果显示,在高pLOS-ICU发生风险的ICU人群中,RF模型倾向于略微高估其风险;在低pLOS-ICU发生风险的ICU人群中,RF模型倾向于略微低估其风险。基于性能最优的RF模型识别的对pLOS-ICU预测最重要的五个变量依次为年龄、心率、收缩压、体温和动脉血氧分压与吸入氧分数之比。结论:基于机器学习方法构建ICU患者的pLOS-ICU预测模型相比于传统的定制版SAPS-Ⅱ模型,预测性能均有明显提升,其中,基于RF方法的pLOS-ICU预测模型性能最优,具有很大的临床应用潜力。展开更多
文摘近年来,全卷积神经网络有效提升了语义分割任务的准确率.然而,由于室内环境的复杂性,室内场景语义分割仍然是一个具有挑战性的问题.随着深度传感器的出现,人们开始考虑利用深度信息提升语义分割效果.以往的研究大多简单地使用等权值的拼接或求和操作来融合RGB特征和深度特征,未能充分利用RGB特征与深度特征之间的互补信息.本文提出一种基于注意力感知和语义感知的网络模型ASNet(Attention-aware and Semantic-aware Network).通过引入注意力感知多模态融合模块和语义感知多模态融合模块,有效地融合多层次的RGB特征和深度特征.其中,在注意力感知多模态融合模块中,本文设计了一种跨模态注意力机制,RGB特征和深度特征利用互补信息相互指导和优化,从而提取富含空间位置信息的特征表示.另外,语义感知多模态融合模块通过整合语义相关的RGB特征通道和深度特征通道,建模多模态特征之间的语义依赖关系,提取更精确的语义特征表示.本文将这两个多模态融合模块整合到一个带有跳跃连接的双分支编码-解码网络模型中.同时,网络在训练时采用深层监督策略,在多个解码层上进行监督学习.在公开数据集上的实验结果表明,本文算法优于现有的RGB-D图像语义分割算法,在平均精度和平均交并比上分别比近期算法提高了1.9%和1.2%.
文摘目的:基于三种机器学习算法——支持向量机(support vector machine,SVM)、分类回归树(classification and regression tree,CART)和随机森林(random forest,RF),构建重症监护室(intensive care unit,ICU)患者的ICU入住时长(length of ICU stay,LOS-ICU)分类预测模型,并与传统的定制版简化急性生理功能评分Ⅱ(simplified acute physiology scoreⅡ,SAPS-Ⅱ)模型进行比较。方法:使用美国大型重症医疗数据库(medical information mart for intensive careⅢ,MIMIC-Ⅲ),以ICU患者是否发生超长LOS-ICU(prolonged LOS-ICU,pLOS-ICU)作为结局指标,构建定制版SAPS-Ⅱ、SVM、CART和RF模型,使用递归特征消除法进行特征选择,基于五折交叉验证找出最佳预测模型。模型的预测性能评价指标包括Brier评分、受试者工作特征(receiver operation characteristic,ROC)曲线下面积(area under the ROC curve,AUROC)和估计校准度指数(estimated calibration index,ECI),模型性能指标之间的比较使用双侧t检验。使用本研究中预测性能最好的模型识别出来的各预测变量重要性排序结果,给出重要性排序前五位的预测变量。结果:最终共纳入40200例ICU患者,发生pLOS-ICU的患者23.7%。其中,男性患者57.6%,患者平均年龄为(61.9±16.5)岁。五折交叉验证结果显示,相比于定制版SAPS-Ⅱ模型,三种机器学习模型的预测性能在各个指标上均有明显提升,且差异均具有统计学意义(P<0.01)。其中,RF模型在综合预测性能、区分度与校准度三个方面均表现最优,其Brier评分、AUROC和ECI分别为0.145、0.770和7.259。校准曲线结果显示,在高pLOS-ICU发生风险的ICU人群中,RF模型倾向于略微高估其风险;在低pLOS-ICU发生风险的ICU人群中,RF模型倾向于略微低估其风险。基于性能最优的RF模型识别的对pLOS-ICU预测最重要的五个变量依次为年龄、心率、收缩压、体温和动脉血氧分压与吸入氧分数之比。结论:基于机器学习方法构建ICU患者的pLOS-ICU预测模型相比于传统的定制版SAPS-Ⅱ模型,预测性能均有明显提升,其中,基于RF方法的pLOS-ICU预测模型性能最优,具有很大的临床应用潜力。