期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
智能物联网AIoT研究综述 被引量:66
1
作者 吴吉义 李文娟 +3 位作者 曹健 钱诗友 张启飞 BUYYA Rajkumar 《电信科学》 2021年第8期1-17,共17页
智能物联网(artificial intelligence of things,AIoT)是人工智能与物联网技术相融合的产物,这一新兴概念在智慧城市、智能家居、智慧制造、无人驾驶等领域得到了广泛应用。然而AIoT相关技术研究仍处于初级阶段,存在大量问题和挑战。首... 智能物联网(artificial intelligence of things,AIoT)是人工智能与物联网技术相融合的产物,这一新兴概念在智慧城市、智能家居、智慧制造、无人驾驶等领域得到了广泛应用。然而AIoT相关技术研究仍处于初级阶段,存在大量问题和挑战。首先简述了AIoT技术产生的背景,明晰其定义和应用场景。以此为契机,构建了一个新型的面向智能信息处理的云边端融合AIoT架构。在给出AIoT研究体系的基础上,详细探讨并比较了其各组成技术模块,包括AI融合IoT数据采集、复杂事件处理及协同、云边端融合研究、AI融合IoT安全及隐私保护和AI融合应用服务等方面的研究现状和解决方案。最后,论述了AIoT未来的研究方向和发展趋势。 展开更多
关键词 智能物联网 云边端混合计算框架 AI融合IoT应用 研究方向
在线阅读 下载PDF
基于优化卷积神经网络的车辆特征识别算法研究 被引量:5
2
作者 陈暄 吴吉义 《电信科学》 2023年第10期101-111,共11页
针对道路场景图像中不同距离目标车辆特征存在识别效果弱、精度低的问题,提出一种基于优化卷积神经网络的车辆特征识别算法。首先,采用基于PAN模型的多尺度输入获取不同距离的目标车辆特征;其次,在卷积神经网络结构中加入多池化、BN层和... 针对道路场景图像中不同距离目标车辆特征存在识别效果弱、精度低的问题,提出一种基于优化卷积神经网络的车辆特征识别算法。首先,采用基于PAN模型的多尺度输入获取不同距离的目标车辆特征;其次,在卷积神经网络结构中加入多池化、BN层和Leaky ReLU激活函数改进网络模型的性能,通过引入混合注意力机制,集中关注车辆图像中的重要特征和区域,从而增强了网络模型的泛化能力;最后,通过构建多层次卷积神经网络结构完成对车辆的特征效果识别。仿真实验结果表明,在单一场景的BIT-Vehicle数据库中,本文算法相比CNN、R-CNN、ABC-CNN、Faster R-CNN、AlexNet、VGG16和YOLOV8在单一目标和多目标识别率方面分别提高了16.75%、10.9%、4%、3.7%、2.46%、1.3%、1%和17.8%、10.5%、2.5%、3.8%、2.7%、1.1%、1.3%,在复杂场景的UA-DETRAC数据库中,本文算法相比其他算法在不同距离目标车辆识别中获得了更加精确的效果。 展开更多
关键词 车辆识别 卷积神经网络 多尺度输入
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部