针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同...针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。展开更多
文摘针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。