光伏发电系统的发电效率与最大功率点的捕捉与跟踪技术密切相关。当辐照度、温度及其他外部环境变化时,光伏电池的开路电压、短路电流和最大功率点电压及电流也随之变化。为提高光伏发电效率,寻求光伏电池的最优工作状态,大多数的最大...光伏发电系统的发电效率与最大功率点的捕捉与跟踪技术密切相关。当辐照度、温度及其他外部环境变化时,光伏电池的开路电压、短路电流和最大功率点电压及电流也随之变化。为提高光伏发电效率,寻求光伏电池的最优工作状态,大多数的最大功率点跟踪(Maximum power point tracking,MPPT)主要作用于DC-DC变换器的输入端,该方式在MPPT时会受到变换器损耗的影响,降低最大功率点寻优精度。基于Boost电路,在DC-DC变换器的输出端搭建MPPT系统,通过调节输出电压参数来实现对效果变化的控制,且在MPPT系统引入了导纳微分法(Admittance differentiation method,ADM),实现对MPPT控制器的重构,实施中搭建不同的仿真模型,再借助仿真模型达到对ADM的修正与优化,综合论证该方法具有更优的指标和更好的效果。展开更多
文摘光伏发电系统的发电效率与最大功率点的捕捉与跟踪技术密切相关。当辐照度、温度及其他外部环境变化时,光伏电池的开路电压、短路电流和最大功率点电压及电流也随之变化。为提高光伏发电效率,寻求光伏电池的最优工作状态,大多数的最大功率点跟踪(Maximum power point tracking,MPPT)主要作用于DC-DC变换器的输入端,该方式在MPPT时会受到变换器损耗的影响,降低最大功率点寻优精度。基于Boost电路,在DC-DC变换器的输出端搭建MPPT系统,通过调节输出电压参数来实现对效果变化的控制,且在MPPT系统引入了导纳微分法(Admittance differentiation method,ADM),实现对MPPT控制器的重构,实施中搭建不同的仿真模型,再借助仿真模型达到对ADM的修正与优化,综合论证该方法具有更优的指标和更好的效果。