期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术 被引量:1
1
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子群-反向传播神经网络算法 织物质量预测
在线阅读 下载PDF
基于ISSA-BP神经网络的棉纱条干均匀度预测 被引量:1
2
作者 韩蔚然 俞博 +2 位作者 方辽辽 徐郁山 陈炜 《棉纺织技术》 CAS 2024年第4期8-15,共8页
为解决棉纱条干均匀度难以预测的问题,提出了一种改进麻雀搜索算法(ISSA)优化BP神经网络的预测方法。首先,将棉纱成形过程中采集到的12个原棉指标进行特征提取,作为BP神经网络预测模型的输入变量。接着,利用佳点集策略,Levy飞行策略和... 为解决棉纱条干均匀度难以预测的问题,提出了一种改进麻雀搜索算法(ISSA)优化BP神经网络的预测方法。首先,将棉纱成形过程中采集到的12个原棉指标进行特征提取,作为BP神经网络预测模型的输入变量。接着,利用佳点集策略,Levy飞行策略和锦标赛学习策略对麻雀搜索算法(SSA)进行改进。最后,利用ISSA搜索BP神经网络最优的初始权值和阈值,建立ISSA-BP神经网络模型。为验证改进算法的有效性,利用Python进行训练和仿真,并与BP模型、GA-BP模型、PSO-BP模型和SSA-BP模型进行预测结果对比。结果表明:ISSA-BP模型在棉纱条干均匀度预测中平均相对误差为1.52%,预测性能较优,误差较小,预测结果较为理想,可以有效预测棉纱条干均匀度。 展开更多
关键词 条干均匀度预测 改进麻雀搜索算法 BP神经网络 特征提取 Python仿真
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部