受生物蚂蚁觅食行为的启发,拓展蚁群系统的性能,以正态分布模拟信息素的密度分布,并以此进行随机数抽样,构成蚁群的状态转移规则。系统将随着蚂蚁的移动调整分布函数,实施信息素更新,蚁群在信息素的引导下逐步向最优食物源聚集。系统还...受生物蚂蚁觅食行为的启发,拓展蚁群系统的性能,以正态分布模拟信息素的密度分布,并以此进行随机数抽样,构成蚁群的状态转移规则。系统将随着蚂蚁的移动调整分布函数,实施信息素更新,蚁群在信息素的引导下逐步向最优食物源聚集。系统还引入优进策略和变异策略,加强局部挖掘和全局探索机制,提高蚁群的寻优能力,构建为混合连续蚁群系统(hybrid continuous ant colony system,HCACS)。经多种经典函数的测试,表明HCACS适用于连续优化问题,性能良好,对于维数较高和搜索空间较宽广的问题,更具优势。HCACS算法的参数较少,设置简单,实用性较强。展开更多
Optimization algorithm solving Lagrangian multipliers is the key of training SVM,determining the perfor-mance of SVM ,affecting practical applications of SVM in various fields widely. Some kinds of optimization algori...Optimization algorithm solving Lagrangian multipliers is the key of training SVM,determining the perfor-mance of SVM ,affecting practical applications of SVM in various fields widely. Some kinds of optimization algorithmsin SVM of overseas are introduced. We classify the optimization algorithms into two kinds: 1. the algorithms based onOsuna's decomposition strategy; 2. The iterative algorithms based on the changes of SVM formulation proposed byO. L. Mangasarian. We also analyze the characteristics of various optimization algorithms in SVM ,and predicting thetrend of research on optimization algorithm in SVM.展开更多
文摘受生物蚂蚁觅食行为的启发,拓展蚁群系统的性能,以正态分布模拟信息素的密度分布,并以此进行随机数抽样,构成蚁群的状态转移规则。系统将随着蚂蚁的移动调整分布函数,实施信息素更新,蚁群在信息素的引导下逐步向最优食物源聚集。系统还引入优进策略和变异策略,加强局部挖掘和全局探索机制,提高蚁群的寻优能力,构建为混合连续蚁群系统(hybrid continuous ant colony system,HCACS)。经多种经典函数的测试,表明HCACS适用于连续优化问题,性能良好,对于维数较高和搜索空间较宽广的问题,更具优势。HCACS算法的参数较少,设置简单,实用性较强。
文摘Optimization algorithm solving Lagrangian multipliers is the key of training SVM,determining the perfor-mance of SVM ,affecting practical applications of SVM in various fields widely. Some kinds of optimization algorithmsin SVM of overseas are introduced. We classify the optimization algorithms into two kinds: 1. the algorithms based onOsuna's decomposition strategy; 2. The iterative algorithms based on the changes of SVM formulation proposed byO. L. Mangasarian. We also analyze the characteristics of various optimization algorithms in SVM ,and predicting thetrend of research on optimization algorithm in SVM.