期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于复杂网络控制理论的肿瘤关键基因预测研究 被引量:3
1
作者 姚旭 詹秀秀 +1 位作者 刘闯 张子柯 《电子科技大学学报》 EI CAS CSCD 北大核心 2022年第1期138-147,共10页
复杂网络控制能够捕获整个网络的状态,使得从海量的蛋白质相互作用数据中找到潜在的肿瘤致病基因成为可能。该文利用复杂网络控制理论探究肿瘤关键基因,对5种癌症相关的蛋白质–蛋白质相互作用网络,通过网络最小控制集方法,选取始终处... 复杂网络控制能够捕获整个网络的状态,使得从海量的蛋白质相互作用数据中找到潜在的肿瘤致病基因成为可能。该文利用复杂网络控制理论探究肿瘤关键基因,对5种癌症相关的蛋白质–蛋白质相互作用网络,通过网络最小控制集方法,选取始终处于最小控制集(minimum dominating set,MDS)的基因作为候选关键基因。利用肿瘤相关的生物通路数据和已被证实的肿瘤基因数据,采用富集分析证明了该方法的有效性。构建网络综合中心性指标,对候选关键基因进行排序。进而针对不同的癌症类型,挑选排在前面的候选基因(非已知重要基因集的基因)作为最终的预测基因,基于网络结构和体细胞突变数据分析,对其作为生物标志物的有效性进行验证。该研究在一定程度上为复杂网络控制理论在生物医学中的应用提供了思路。 展开更多
关键词 生物标志物 复杂网络控制 关键基因 蛋白质相互作用 肿瘤
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部