期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于评论大数据的手机产品改进 被引量:19
1
作者 杨程 谭昆 俞春阳 《计算机集成制造系统》 EI CSCD 北大核心 2020年第11期3074-3083,共10页
为应对高频产品迭代,提出一种基于评论大数据的产品设计改进研究方法。以手机为研究对象爬取大量在线评论,借助隐含狄利克雷主题模型确定用户关注的产品属性及其对应的属性词,并对评论的有用性进行分析;通过情感分析计算用户对手机各产... 为应对高频产品迭代,提出一种基于评论大数据的产品设计改进研究方法。以手机为研究对象爬取大量在线评论,借助隐含狄利克雷主题模型确定用户关注的产品属性及其对应的属性词,并对评论的有用性进行分析;通过情感分析计算用户对手机各产品属性的关注度和满意度等指标,从而建立评价指标体系,并找到手机亟需改进的产品属性;通过观点挖掘找到用户不满意的点,进而确定手机的改进策略。利用多元线性回归分析建立手机评价指标与评论差评率的线性回归模型,通过采用该模型较准确地预测手机评论的差评率,验证了所提方法的有效性。该方法将挖掘和情感分析结合,可快速为产品设计改进提供决策依据。 展开更多
关键词 大数据 文本挖掘 情感分析 产品设计改进 多元线性回归 手机
在线阅读 下载PDF
基于深度学习的产品意象识别 被引量:24
2
作者 朱斌 杨程 +1 位作者 俞春阳 安芳 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第9期1778-1784,共7页
为了满足用户对产品的情感化需求,提出一种基于深度学习的产品意象识别方法.该方法通过语义差异法获得产品意象数据集,在此基础上,使用卷积神经网络VGGNet进行训练,建立产品意象深度模型.以典型的椅子产品为例对文中方法进行验证,训练... 为了满足用户对产品的情感化需求,提出一种基于深度学习的产品意象识别方法.该方法通过语义差异法获得产品意象数据集,在此基础上,使用卷积神经网络VGGNet进行训练,建立产品意象深度模型.以典型的椅子产品为例对文中方法进行验证,训练好的产品意象深度模型识别准确率最高可达95.3%.为了进一步证明该方法的优越性,将其分别与以支持向量机(SVM)为代表的传统方法和浅层的卷积神经网络Caffe Net进行对比实验,结果表明,在识别准确率上该方法比SVM提高了约5%,比Caffe Net提升了4%~10%.此外,为了解释深度学习的识别过程,对卷积特征进行了可视化,展现了特征映射从底层到高层的抽象过程. 展开更多
关键词 产品意象 深度学习 自学习特征 VGGNet 卷积操作
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部