期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于IPSO-LSTM组合模型的城市轨道交通短时客流预测 被引量:12
1
作者 赵明伟 张文胜 《铁道运输与经济》 北大核心 2022年第2期123-130,共8页
准确的短时客流预测能够为城市轨道交通的良好运营提供保障,为提高预测的精度,提出将IPSO算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型。针对PSO算法不能很好地区分全局搜索和局部搜索,易陷入局部极值的问题,引入自适应变... 准确的短时客流预测能够为城市轨道交通的良好运营提供保障,为提高预测的精度,提出将IPSO算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型。针对PSO算法不能很好地区分全局搜索和局部搜索,易陷入局部极值的问题,引入自适应变化的惯性权重和时间因子,动态调整粒子的移动步长,提高PSO算法全局搜索的能力;借鉴遗传算法中的变异机制,引入自适应变异函数,使PSO算法具有跳出局部范围的能力。利用IPSO算法对LSTM模型的迭代次数、学习率和隐含层的神经元个数进行寻优,构建IPSO-LSTM组合预测模型,对城市轨道交通短时客流进行预测,并与BP,LSTM,PSOLSTM共3种短时客流预测模型进行对比,在针对工作日和非工作日客流的预测中,结果显示IPSO-LSTM模型的预测误差最小,具有较好的预测效果。 展开更多
关键词 城市轨道交通 短时客流预测 改进粒子群算法 长短时记忆神经网络 组合模型
在线阅读 下载PDF
基于EMD-PSO-LSTM组合模型的城市轨道交通短时客流预测 被引量:13
2
作者 赵明伟 张文胜 +1 位作者 王克文 李红 《铁道运输与经济》 北大核心 2022年第7期110-118,共9页
准确的短时客流预测能够为城市轨道交通的良好运营提供保障,针对客流的非线性和强随机性特点以及LSTM神经网络参数较难确定的问题,提出一种基于EMD和PSO优化LSTM神经网络的组合预测模型。首先利用EMD降低数据噪声的干扰,将客流数据分解... 准确的短时客流预测能够为城市轨道交通的良好运营提供保障,针对客流的非线性和强随机性特点以及LSTM神经网络参数较难确定的问题,提出一种基于EMD和PSO优化LSTM神经网络的组合预测模型。首先利用EMD降低数据噪声的干扰,将客流数据分解为多个IMF,然后利用PSO优化LSTM神经网络的学习率、迭代次数和隐含层的神经元个数,并对各IMF进行预测,将各IMF的预测结果加和得到最终的预测结果。以上海陆家嘴站的客流预测为例验证组合模型的有效性,并与LSTM,EMD-LSTM,PSOLSTM 3种短时客流预测模型做比较,结果显示EMD-PSO-LSTM组合模型的预测误差均小于其他3种模型,在针对工作日和非工作日的客流预测中,预测值和真实值的决定系数分别达到0.992和0.963,可以有效提高客流预测模型的预测精度。 展开更多
关键词 城市轨道交通 短时客流预测 EMD PSO LSTM神经网络 EMD-PSO-LSTM组合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部