传统的以数据为中心的路由协议,往往会导致传感网中出现在大量的"能量空洞"或"热点"现象。为了克服上述现象,借助雾计算理论模型,提出了一种基于雾计算跨层感知分簇路由协议(A Cross-layer-sensing Clustering Rout...传统的以数据为中心的路由协议,往往会导致传感网中出现在大量的"能量空洞"或"热点"现象。为了克服上述现象,借助雾计算理论模型,提出了一种基于雾计算跨层感知分簇路由协议(A Cross-layer-sensing Clustering Routing Protocol Based on Fog Computing,CCRP)。该协议通过跨层映射原理,利用感知事件驱动机制将雾节点映射到传感层,构成功能强大的虚拟控制节点,将传感网分簇路由协议的控制过程上传至雾层,通过雾计算实现事件域节点分布式成簇路由汇聚中心,从而建立以映射雾节点为中心的优化数据聚合路由,取代传感网底层路由中的数据,进一步平衡并减少网络负载。在路由协议优化阶段,利用粒子群优化算法(Particle Swarm Optimizations,PSO)采用无竞争开销方式选举一组最佳节点担任簇首,能有效地均衡全网能量的开销,抑制传感器节点能量的快速消耗,延长了网络生存周期。仿真实验表明,CCRP协议能够有效抑制网络开销的同时还可以高效完成对数据的优化过程。展开更多
为了提高传感网中数据重构精度以及降低不可靠链路丢包对压缩感知(Compressive Sensing,CS)数据收集的影响,本文提出了一种基于压缩感知丢包匹配数据收集算法(Packet Loss Matching Data Gathering Algorithm Based on Compressive Sens...为了提高传感网中数据重构精度以及降低不可靠链路丢包对压缩感知(Compressive Sensing,CS)数据收集的影响,本文提出了一种基于压缩感知丢包匹配数据收集算法(Packet Loss Matching Data Gathering Algorithm Based on Compressive Sensing,CS-MDGA).本文算法通过压缩感知技术构建了全网数据间的“关联效应”,并设计了基于丢包匹配的稀疏观测矩阵(Sparse Observation Matrix Based on Packet Loss Matching,SPLM),证明了该观测矩阵概率趋近于“1”时,满足的等距约束条件(Restricted Isometry Property,RIP),完成了节点间多路径路由数据的可靠交付.仿真实验结果表明,本文算法在链路丢包率为60%情况下,相对重构误差仍小于5%,验证了本文算法不仅具有较高的重构精度,而且还可以有效缓解不可靠链路丢包对CS数据收集的影响.展开更多
文摘传统的以数据为中心的路由协议,往往会导致传感网中出现在大量的"能量空洞"或"热点"现象。为了克服上述现象,借助雾计算理论模型,提出了一种基于雾计算跨层感知分簇路由协议(A Cross-layer-sensing Clustering Routing Protocol Based on Fog Computing,CCRP)。该协议通过跨层映射原理,利用感知事件驱动机制将雾节点映射到传感层,构成功能强大的虚拟控制节点,将传感网分簇路由协议的控制过程上传至雾层,通过雾计算实现事件域节点分布式成簇路由汇聚中心,从而建立以映射雾节点为中心的优化数据聚合路由,取代传感网底层路由中的数据,进一步平衡并减少网络负载。在路由协议优化阶段,利用粒子群优化算法(Particle Swarm Optimizations,PSO)采用无竞争开销方式选举一组最佳节点担任簇首,能有效地均衡全网能量的开销,抑制传感器节点能量的快速消耗,延长了网络生存周期。仿真实验表明,CCRP协议能够有效抑制网络开销的同时还可以高效完成对数据的优化过程。
文摘为了提高传感网中数据重构精度以及降低不可靠链路丢包对压缩感知(Compressive Sensing,CS)数据收集的影响,本文提出了一种基于压缩感知丢包匹配数据收集算法(Packet Loss Matching Data Gathering Algorithm Based on Compressive Sensing,CS-MDGA).本文算法通过压缩感知技术构建了全网数据间的“关联效应”,并设计了基于丢包匹配的稀疏观测矩阵(Sparse Observation Matrix Based on Packet Loss Matching,SPLM),证明了该观测矩阵概率趋近于“1”时,满足的等距约束条件(Restricted Isometry Property,RIP),完成了节点间多路径路由数据的可靠交付.仿真实验结果表明,本文算法在链路丢包率为60%情况下,相对重构误差仍小于5%,验证了本文算法不仅具有较高的重构精度,而且还可以有效缓解不可靠链路丢包对CS数据收集的影响.