超点检测对于网络安全、网络管理等应用具有重要意义.由于存在着高速网络环境下海量网络流量与有限系统资源之间的矛盾,在线准确地监测网络流量是一个极大的挑战.随着多核处理器的发展,多核处理器的并行性成为算法性能提高的一种有效途...超点检测对于网络安全、网络管理等应用具有重要意义.由于存在着高速网络环境下海量网络流量与有限系统资源之间的矛盾,在线准确地监测网络流量是一个极大的挑战.随着多核处理器的发展,多核处理器的并行性成为算法性能提高的一种有效途径.目前,针对基于流抽样的超点检测方法存在计算负荷重、检测精度低、实时性差等问题,提出了一种并行数据流方法(parallel data streaming,简称PDS).该方法构造并行的可逆Sketch数据结构,建立紧凑的节点链接度概要,在未存储节点地址信息的情况下,通过简单地计算重构超点的地址,获得了良好的效率和精度.实验结果表明:与CSE(compact spread estimator),JM(joint data streaming and sampling method)方法相比,该方法具有较好的性能,能够满足高速网络流量监测的应用需求.展开更多
针对当前图像隐写方案存在阶梯效应,使其不可感知能力差,且其信息隐藏容量小(≤50%)等不足,设计了最优像素调整耦合基因算法的高容量图像隐写术。基于HDWT(Hara discerte wavelet transform)机制,构造隐藏信息长度计算模型,找出图像分...针对当前图像隐写方案存在阶梯效应,使其不可感知能力差,且其信息隐藏容量小(≤50%)等不足,设计了最优像素调整耦合基因算法的高容量图像隐写术。基于HDWT(Hara discerte wavelet transform)机制,构造隐藏信息长度计算模型,找出图像分块的频域表示,以改善隐写鲁棒性;根据载体图像与隐写图像之间的绝对误差,设计适应度函数,借助基因算法,获取最优映射函数,将秘密信息嵌入到HDWT系数中;并设计最优像素变换方案,降低载秘图像与载体图像之间的嵌入误差,显著增大隐写容量;再设计其提取机制,获取信息图像;以PSNR(peak signal to ratio)构建反馈机制,优化提取质量。仿真结果显示,与其他隐写机制相比,该算法具备更大的隐写容量和更强的不可感知性能;拥有更高的检测精度,可有效区分载体与隐写图像特征值。展开更多
事件序列中蕴藏的频繁情节刻画了用户或系统的行为规律.现有的频繁情节挖掘算法在各自支持度定义下具有较好的挖掘效果,但在支持度定义发生变化时却很难甚至无法直接挖掘频繁情节.针对用户多变的支持度定义需求,提出了一种频繁情节挖掘...事件序列中蕴藏的频繁情节刻画了用户或系统的行为规律.现有的频繁情节挖掘算法在各自支持度定义下具有较好的挖掘效果,但在支持度定义发生变化时却很难甚至无法直接挖掘频繁情节.针对用户多变的支持度定义需求,提出了一种频繁情节挖掘算法FEM-DFS(frequent episode mining-depth first search).该算法通过单遍扫描事件序列,以深度优先搜索方式来发现频繁情节,以共享前/后缀树来存储频繁情节,以单调性、前缀单调性或后缀单调性来压缩频繁情节的搜索空间.实验评估证实了所提出算法的有效性.展开更多
文摘超点检测对于网络安全、网络管理等应用具有重要意义.由于存在着高速网络环境下海量网络流量与有限系统资源之间的矛盾,在线准确地监测网络流量是一个极大的挑战.随着多核处理器的发展,多核处理器的并行性成为算法性能提高的一种有效途径.目前,针对基于流抽样的超点检测方法存在计算负荷重、检测精度低、实时性差等问题,提出了一种并行数据流方法(parallel data streaming,简称PDS).该方法构造并行的可逆Sketch数据结构,建立紧凑的节点链接度概要,在未存储节点地址信息的情况下,通过简单地计算重构超点的地址,获得了良好的效率和精度.实验结果表明:与CSE(compact spread estimator),JM(joint data streaming and sampling method)方法相比,该方法具有较好的性能,能够满足高速网络流量监测的应用需求.
文摘针对当前图像隐写方案存在阶梯效应,使其不可感知能力差,且其信息隐藏容量小(≤50%)等不足,设计了最优像素调整耦合基因算法的高容量图像隐写术。基于HDWT(Hara discerte wavelet transform)机制,构造隐藏信息长度计算模型,找出图像分块的频域表示,以改善隐写鲁棒性;根据载体图像与隐写图像之间的绝对误差,设计适应度函数,借助基因算法,获取最优映射函数,将秘密信息嵌入到HDWT系数中;并设计最优像素变换方案,降低载秘图像与载体图像之间的嵌入误差,显著增大隐写容量;再设计其提取机制,获取信息图像;以PSNR(peak signal to ratio)构建反馈机制,优化提取质量。仿真结果显示,与其他隐写机制相比,该算法具备更大的隐写容量和更强的不可感知性能;拥有更高的检测精度,可有效区分载体与隐写图像特征值。
文摘事件序列中蕴藏的频繁情节刻画了用户或系统的行为规律.现有的频繁情节挖掘算法在各自支持度定义下具有较好的挖掘效果,但在支持度定义发生变化时却很难甚至无法直接挖掘频繁情节.针对用户多变的支持度定义需求,提出了一种频繁情节挖掘算法FEM-DFS(frequent episode mining-depth first search).该算法通过单遍扫描事件序列,以深度优先搜索方式来发现频繁情节,以共享前/后缀树来存储频繁情节,以单调性、前缀单调性或后缀单调性来压缩频繁情节的搜索空间.实验评估证实了所提出算法的有效性.