为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷...为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷粉末与聚氧化乙烯、LIFSI混合均匀后浇筑成膜,将PVDF溶液均匀涂覆在电解质膜表面,干燥得到修饰后的电解质膜。通过电化学实验、充放电实验、表面表征等方法,研究PVDF修饰后电解质膜的性能。结果显示,PVDF影响了LATP的晶体结构,优化了锂离子迁移通道。修饰后电解质膜的室温离子电导率提升,室温下电化学窗口由3.74 V增加到4.10 V,锂离子迁移数由0.915提升到0.978,组装锂金属对称电池在0.05 m A/cm^(2)电流密度下的循环时间从45 h提升到280 h以上,有效抑制了锂枝晶的生长,提升了电解质膜与锂金属界面稳定性。在电流密度0.025、0.050、0.100、0.200 m A/cm^(2)下的极化电压分别为27、60、110、220 m V。在LFP|SSCEs-1|Li全电池中循环超过25圈后形成了良好的SEI界面。从第25圈到第100圈容量保持率为87%,库仑效率始终保持在95%以上。PVDF修饰层提升了LATP电解质膜的电化学性能以及和锂金属界面的稳定性,对全固态锂电池的应用具有积极意义。展开更多
以场发射扫描电镜与Pores and Cracks Analysis System(PCAS)图像处理软件为主要研究手段,以形状系数为孔隙形态表征参数,并选取低压N2吸附等为辅助研究手段,对四川盆地及周缘地区的典型钻井A-D井龙马溪组及筇竹寺组黑色页岩中纳米孔隙...以场发射扫描电镜与Pores and Cracks Analysis System(PCAS)图像处理软件为主要研究手段,以形状系数为孔隙形态表征参数,并选取低压N2吸附等为辅助研究手段,对四川盆地及周缘地区的典型钻井A-D井龙马溪组及筇竹寺组黑色页岩中纳米孔隙的形态特征进行定量研究。研究发现黑色页岩纳米孔隙形态受孔隙类型(赋存位置)、有机质显微组分、地层埋藏深度、热成熟度及孔隙尺寸等因素综合控制。具体体现在:(1)有机质孔、粒间孔和粒内孔所占比例、孔径分布与孔隙形态具有明显差异,反映这三类孔隙的演化受成岩作用的影响不同。(2)固体沥青纳米孔隙比其他显微组分中的纳米孔隙更加规则。(3)与埋藏深度密切相关的压实作用很可能会在垂向上压缩孔隙,一方面令孔径缩小,另一方面让孔隙形态往狭长–裂缝形发展。(4)有机质孔形态随热成熟度升高总体上会变得更加规则,但这种趋势可能会被孔隙间的合并及压实作用等破坏。(5)面积更小的孔隙形态往往比面积更大的孔隙更规则。初步研究显示固体沥青纳米孔隙形态代表着高过成熟页岩气储层中主体储集空间所处压力环境,但固体沥青纳米孔隙形态随孔隙压力的演化模式及利用固体沥青纳米孔隙形态表征其所在层系异常高压维持状况及页岩气保存状况的可能性尚需进一步研究。展开更多
高浅北区稠油油藏平均地层温度65℃,原油地下黏度90.34 m Pa·s,已经历多次调剖调驱,含水已达97%。为了寻找提高采收率接替技术,进行了空气泡沫驱室内实验研究。微观模型驱油实验表明,泡沫驱的主要机理是封堵和乳化作用。在静态空...高浅北区稠油油藏平均地层温度65℃,原油地下黏度90.34 m Pa·s,已经历多次调剖调驱,含水已达97%。为了寻找提高采收率接替技术,进行了空气泡沫驱室内实验研究。微观模型驱油实验表明,泡沫驱的主要机理是封堵和乳化作用。在静态空气氧化实验中,该油藏原油可在模拟油藏条件下缓慢氧化,氧化速率为(2.261×10-5~2.448×10-5mol O2·h-1·[m L(oil)]-1,随压力、温度升高而增大。在物理模拟驱油实验中,在水驱采收率12.35%的基础上,依次进行的空气驱、空气泡沫驱、后续水驱、后续空气驱分别提高采收率36.47%、14.12%、11.18%、0;驱替过程中产出气中CO2和O2含量变化指明原油发生了氧化;注入压力变化指明空气泡沫的封堵作用。对于高浅北区稠油油藏,空气泡沫驱是可行的。展开更多
文摘为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷粉末与聚氧化乙烯、LIFSI混合均匀后浇筑成膜,将PVDF溶液均匀涂覆在电解质膜表面,干燥得到修饰后的电解质膜。通过电化学实验、充放电实验、表面表征等方法,研究PVDF修饰后电解质膜的性能。结果显示,PVDF影响了LATP的晶体结构,优化了锂离子迁移通道。修饰后电解质膜的室温离子电导率提升,室温下电化学窗口由3.74 V增加到4.10 V,锂离子迁移数由0.915提升到0.978,组装锂金属对称电池在0.05 m A/cm^(2)电流密度下的循环时间从45 h提升到280 h以上,有效抑制了锂枝晶的生长,提升了电解质膜与锂金属界面稳定性。在电流密度0.025、0.050、0.100、0.200 m A/cm^(2)下的极化电压分别为27、60、110、220 m V。在LFP|SSCEs-1|Li全电池中循环超过25圈后形成了良好的SEI界面。从第25圈到第100圈容量保持率为87%,库仑效率始终保持在95%以上。PVDF修饰层提升了LATP电解质膜的电化学性能以及和锂金属界面的稳定性,对全固态锂电池的应用具有积极意义。
文摘以场发射扫描电镜与Pores and Cracks Analysis System(PCAS)图像处理软件为主要研究手段,以形状系数为孔隙形态表征参数,并选取低压N2吸附等为辅助研究手段,对四川盆地及周缘地区的典型钻井A-D井龙马溪组及筇竹寺组黑色页岩中纳米孔隙的形态特征进行定量研究。研究发现黑色页岩纳米孔隙形态受孔隙类型(赋存位置)、有机质显微组分、地层埋藏深度、热成熟度及孔隙尺寸等因素综合控制。具体体现在:(1)有机质孔、粒间孔和粒内孔所占比例、孔径分布与孔隙形态具有明显差异,反映这三类孔隙的演化受成岩作用的影响不同。(2)固体沥青纳米孔隙比其他显微组分中的纳米孔隙更加规则。(3)与埋藏深度密切相关的压实作用很可能会在垂向上压缩孔隙,一方面令孔径缩小,另一方面让孔隙形态往狭长–裂缝形发展。(4)有机质孔形态随热成熟度升高总体上会变得更加规则,但这种趋势可能会被孔隙间的合并及压实作用等破坏。(5)面积更小的孔隙形态往往比面积更大的孔隙更规则。初步研究显示固体沥青纳米孔隙形态代表着高过成熟页岩气储层中主体储集空间所处压力环境,但固体沥青纳米孔隙形态随孔隙压力的演化模式及利用固体沥青纳米孔隙形态表征其所在层系异常高压维持状况及页岩气保存状况的可能性尚需进一步研究。
文摘高浅北区稠油油藏平均地层温度65℃,原油地下黏度90.34 m Pa·s,已经历多次调剖调驱,含水已达97%。为了寻找提高采收率接替技术,进行了空气泡沫驱室内实验研究。微观模型驱油实验表明,泡沫驱的主要机理是封堵和乳化作用。在静态空气氧化实验中,该油藏原油可在模拟油藏条件下缓慢氧化,氧化速率为(2.261×10-5~2.448×10-5mol O2·h-1·[m L(oil)]-1,随压力、温度升高而增大。在物理模拟驱油实验中,在水驱采收率12.35%的基础上,依次进行的空气驱、空气泡沫驱、后续水驱、后续空气驱分别提高采收率36.47%、14.12%、11.18%、0;驱替过程中产出气中CO2和O2含量变化指明原油发生了氧化;注入压力变化指明空气泡沫的封堵作用。对于高浅北区稠油油藏,空气泡沫驱是可行的。