期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种生物炭基柔性固态超级电容器的制备及性能研究 被引量:20
1
作者 禹兴海 罗齐良 +2 位作者 潘剑 韩玉琦 张奇峰 《化工学报》 EI CAS CSCD 北大核心 2019年第9期3590-3600,共11页
利用固体农业废弃物玉米秸秆作为原料,经高温煅烧,KOH刻蚀获得具有较大比表面积的多孔生物炭材料,并采用粉末X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、红外光谱(FT-IR)、拉曼光谱(Raman)以及比表面积和孔径分析仪(BET)等表征手段,研... 利用固体农业废弃物玉米秸秆作为原料,经高温煅烧,KOH刻蚀获得具有较大比表面积的多孔生物炭材料,并采用粉末X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、红外光谱(FT-IR)、拉曼光谱(Raman)以及比表面积和孔径分析仪(BET)等表征手段,研究其物理、化学结构和微观形貌。结果表明,所制备的生物炭材料具有发达的“微孔-中孔-大孔”三维贯通多级孔道结构,比表面积高达1228 m^2·g^?1。将其作为电极材料,与H2SO4/PVA凝胶电解质可组装成为具有柔性的全固态超级电容器。利用循环伏安测试(CV)、恒电流充放电(GCD)以及交流阻抗测试(EIS)对柔性超级电容器电化学性能进行了测试。在电流密度为1.0 A·g^?1的条件下,其比容量可达125 F·g^?1。该器件具有良好的机械柔性和电化学稳定性,将其从0°弯曲至180°的过程中,比电容保持率约为93.5%;以不同弯曲角度将其连续弯折100次后,仍能保持较高的比电容。此外,在弯折角度180°、充放电电流密度为5.0 A·g^?1的条件下经过500次循环充放电后,比电容值保持率约为95.6%,库仑效率约为94.9%。说明所制备的柔性超级电容器具有优异的充放电性能和长效循环稳定性。作为一种柔性、质轻、便携的储能装置,在可穿戴电子器件领域内具有潜在应用价值。同时该方法也为固体农业废弃物玉米秸秆的高附加值转化利用和新型绿色能源器件创新研制提供了新的技术途径。 展开更多
关键词 玉米秸秆 生物炭 固态凝胶电解质 柔性 超级电容器
在线阅读 下载PDF
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能 被引量:2
2
作者 禹兴海 唐海慰 +2 位作者 李艳安 韩玉琦 闵雪梅 《化工进展》 EI CAS CSCD 北大核心 2022年第11期5936-5945,共10页
利用农业固体废弃物玉米秸秆为前体,经700℃高温热解、KOH刻蚀后得到了具有三维孔道结构和大比表面积(2136.67m^(2)/g)的生物炭(KBC)。以KBC为载体,利用乙醇溶解、真空浸渍的方式将有机相变材料硬脂酸(SA)注入其内部孔道中,获得了一种... 利用农业固体废弃物玉米秸秆为前体,经700℃高温热解、KOH刻蚀后得到了具有三维孔道结构和大比表面积(2136.67m^(2)/g)的生物炭(KBC)。以KBC为载体,利用乙醇溶解、真空浸渍的方式将有机相变材料硬脂酸(SA)注入其内部孔道中,获得了一种生物炭/硬脂酸(KBC/SA)复合相变材料。通过红外光谱(IR)、粉末X射线衍射(XRD)、扫描电镜(SEM)、热重分析(TG)、差示扫描量热分析(DSC)等表征手段,对其组成结构、微观形貌、储热性能以及稳定性进行了研究。结果表明,当SA质量分数为71.2%时,复合相变材料的储热性能最佳,其相变过程中的熔融焓和结晶焓分别为126.3J/g和128.7J/g,且经过100次循环储、放热性能测试后,相变焓值无明显变化。相变过程中无渗漏现象发生,表明KBC/SA是一种性能优异的定形相变材料。此外,KBC/SA复合相变材料具有良好的光热、电热转换能力,能够将太阳光能和电能转化为热能并储存和释放。当被模拟太阳光和直流电(U=5.0V)驱动后,其光热、电热转换效率可分别达到78.3%和70.1%。因此所制备的KBC/SA复合相变材料不仅能作为一种储热材料使用,而且在绿色清洁能源转化利用方面具有潜在价值。 展开更多
关键词 生物炭 硬脂酸 光、电驱动 复合相变材料
在线阅读 下载PDF
ZrO_(2)/生物炭纳米复合物催化转移氢化制备γ-戊内酯
3
作者 张奇峰 张振杰 +2 位作者 刘梦影 潘剑 禹兴海 《应用化学》 CAS CSCD 北大核心 2021年第12期1621-1631,共11页
γ-戊内酯(GVL)是重要的生物质基平台化合物。通过催化转移氢化反应将乙酰丙酸转化为GVL是生物质转化领域的重要反应。本实验利用具有多级孔道结构的生物炭(BC)作为载体、氯氧化锆为前驱体,通过溶胶水热反应,制备了一种ZrO_(2)/生物炭... γ-戊内酯(GVL)是重要的生物质基平台化合物。通过催化转移氢化反应将乙酰丙酸转化为GVL是生物质转化领域的重要反应。本实验利用具有多级孔道结构的生物炭(BC)作为载体、氯氧化锆为前驱体,通过溶胶水热反应,制备了一种ZrO_(2)/生物炭纳米复合物,利用红外光谱(FT-IR)、拉曼光谱(Raman)、比表面分析(BET)、粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光电子能谱(XPS)等技术手段对其结构进行了表征,并研究了该复合物催化转移氢化乙酰丙酸制备GVL的能力。结果表明,生物炭载体自身所具有的高比表面积和多级孔道结构,能够促进纳米ZrO_(2)颗粒稳定分散。在Zr;物种和生物炭载体协同作用下,ZrO_(2)/BC纳米复合物表现出优异的催化转移氢化活性,能够在温和条件下,快速、高效地将乙酰丙酸转化为GVL。在最优化反应条件下,乙酰丙酸的转化率最高达94.8%,GVL选择性最高达87.5%。此外,该复合物可通过过滤回收,循环使用5次后仍然能够保持较好的催化活性。 展开更多
关键词 催化转移氢化 乙酰丙酸 γ-戊内酯 ZrO_(2)/生物炭纳米复合物
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部