在Gleeble 1500D热模拟机上对Al2O3/Cu-WC复合材料进行热压缩实验,研究变形温度为350-750℃、应变速率为0.01-5 s 1条件下的热变形行为。结果表明:Al2O3/Cu-WC复合材料高温流变应力—应变曲线主要以动态再结晶软化机制为特征,峰值应力...在Gleeble 1500D热模拟机上对Al2O3/Cu-WC复合材料进行热压缩实验,研究变形温度为350-750℃、应变速率为0.01-5 s 1条件下的热变形行为。结果表明:Al2O3/Cu-WC复合材料高温流变应力—应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为229.17 kJ/mol。根据材料动态模型,计算并建立Al2O3/Cu-WC复合材料的热加工图,据此确定热变形流变失稳区及热变形过程的最佳工艺参数,其热加工温度为650-750℃,应变速率为0.1-1 s 1。展开更多
文摘在Gleeble 1500D热模拟机上对Al2O3/Cu-WC复合材料进行热压缩实验,研究变形温度为350-750℃、应变速率为0.01-5 s 1条件下的热变形行为。结果表明:Al2O3/Cu-WC复合材料高温流变应力—应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为229.17 kJ/mol。根据材料动态模型,计算并建立Al2O3/Cu-WC复合材料的热加工图,据此确定热变形流变失稳区及热变形过程的最佳工艺参数,其热加工温度为650-750℃,应变速率为0.1-1 s 1。
文摘在变形温度950~1150℃,应变速率0.01~10 s^-1,最大变形量为50%的条件下,对含钛H13钢进行高温热压缩实验。研究了含钛H13钢的高温热变形行为,得到了不同变形条件下的流变应力曲线,建立了含钛H13钢的高温热变形本构方程。基于动态材料模型建立了热加工图。结果表明:流变应力曲线呈现两个阶段,应变硬化急速上升阶段和稳定状态阶段,在高应变速率条件下存在断续再结晶行为;高温热变形本构方程与试验结果吻合较好,计算得到含钛H13钢的热变形激活能为560.49 k J·mol^-1。推荐适合该材料的热加工工艺参数为变形温度1080~1150℃、应变速率0.01~1 s^-1。