期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于轻量化YOLOv5的交通标志检测 被引量:2
1
作者 张震 王晓杰 +1 位作者 晋志华 马继骏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期12-19,共8页
为了提高道路交通标志的检测速度,提出一种基于轻量化YOLOv5的改进模型。首先,使用Ghost卷积和深度分离卷积(DWConv)构建新的主干模块,减少计算量和参数量;引入加权特征融合网络(BiFPN)结构,增强特征融合能力;将CIoU损失函数替换为SIoU... 为了提高道路交通标志的检测速度,提出一种基于轻量化YOLOv5的改进模型。首先,使用Ghost卷积和深度分离卷积(DWConv)构建新的主干模块,减少计算量和参数量;引入加权特征融合网络(BiFPN)结构,增强特征融合能力;将CIoU损失函数替换为SIoU损失函数,关注真实锚框与预测的角度信息,提升检测精度。其次,对TT100K数据集进行优化,筛选出标签个数大于200的交通标志图片和标注信息共24类。最后,实验结果取得84%的准确率、81.2%的召回率和85.4%的所有类别平均精确率的平均值mAP@0.5,相比原始YOLOv5,参数量减少29.0%,计算量减少29.4%,mAP@0.5仅下降0.1百分点,检测帧率提升了34帧/s。使用改进后的模型进行检测,检测速度有了明显提升,基本达到了在保持检测精度的基础上压缩模型的目的。 展开更多
关键词 交通标志检测 轻量化YOLOv5 SIoU损失函数 Ghost卷积 TT100K BiFPN
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部