期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度长短期记忆网络的地铁进站客流预测 被引量:17
1
作者 崔洪涛 陈晓旭 +2 位作者 杨超 项煜 段红勇 《城市轨道交通研究》 北大核心 2019年第9期41-45,共5页
提出利用多源数据(地铁刷卡数据、气候数据和节假日数据)进行数据特征构造,并采用深度长短期记忆网络(DLSTM)方法预测地铁进站客流量。以深圳北站地铁站为研究对象,选取该站3个月的地铁IC卡数据记录,前两个月的数据为训练集,后一个月的... 提出利用多源数据(地铁刷卡数据、气候数据和节假日数据)进行数据特征构造,并采用深度长短期记忆网络(DLSTM)方法预测地铁进站客流量。以深圳北站地铁站为研究对象,选取该站3个月的地铁IC卡数据记录,前两个月的数据为训练集,后一个月的数据为测试集。介绍了数据预处理方法和DLSTM模型构建原理。试验结果表明:DLSTM模型的预测准确度随着DLSTM模型的深度增加而增高;与其它模型相比,DLSTM模型的预测精度更高。 展开更多
关键词 地铁 进站客流 客流预测 深度长短期记忆网络
在线阅读 下载PDF
基于地铁售检票系统刷卡数据的乘客出行模式分析 被引量:8
2
作者 项煜 陈晓旭 +1 位作者 杨超 段红勇 《城市轨道交通研究》 北大核心 2020年第6期63-67,共5页
地铁自动售检票系统可以采集大量乘客刷卡数据,可提供更全面的地铁乘客时空信息。对乘客的出行模式分析有利于城市轨道交通运营企业预测地铁客流和制定运营策略。提出了分析地铁乘客出行模式的数据挖掘方法:对地铁刷卡数据进行预处理,... 地铁自动售检票系统可以采集大量乘客刷卡数据,可提供更全面的地铁乘客时空信息。对乘客的出行模式分析有利于城市轨道交通运营企业预测地铁客流和制定运营策略。提出了分析地铁乘客出行模式的数据挖掘方法:对地铁刷卡数据进行预处理,根据其时空信息生成乘客出行链;分析反映乘客时空特性的聚类变量;利用K-means聚类算法对各聚类变量进行乘客聚类;分析潜在的乘客出行模式。以深圳地铁刷卡数据为例,对提出的地铁乘客出行模式分析方法进行了试验验证。 展开更多
关键词 城市轨道交通 刷卡数据 乘客出行模式 K-MEANS聚类算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部