针对传统的K-medoids聚类算法在聚类时需要随机选择初始类中心且指定聚类数目K,及聚类结果不稳定的问题,提出了一种优化初始类中心的自适应K-medoids算法(adaptive K-medoids algorithm for optimizing initial class centers,CH_KD)....针对传统的K-medoids聚类算法在聚类时需要随机选择初始类中心且指定聚类数目K,及聚类结果不稳定的问题,提出了一种优化初始类中心的自适应K-medoids算法(adaptive K-medoids algorithm for optimizing initial class centers,CH_KD).其思想是定义了特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集,并重点研究了传统划分算法的自适应优化与改进.首先,利用特征标准差定义特征区分度,选择出区分度强的特征.其次,利用皮尔逊相关系数度量特征簇中每个特征的冗余度,选择出冗余度低的特征.最后,将特征区分度与特征冗余度之积作为特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集.实验将所提算法与其他聚类算法在14个UCI数据集上进行对比,结果验证了CH_KD算法的有效性与优势.展开更多
针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic s...针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。展开更多
文摘针对传统的K-medoids聚类算法在聚类时需要随机选择初始类中心且指定聚类数目K,及聚类结果不稳定的问题,提出了一种优化初始类中心的自适应K-medoids算法(adaptive K-medoids algorithm for optimizing initial class centers,CH_KD).其思想是定义了特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集,并重点研究了传统划分算法的自适应优化与改进.首先,利用特征标准差定义特征区分度,选择出区分度强的特征.其次,利用皮尔逊相关系数度量特征簇中每个特征的冗余度,选择出冗余度低的特征.最后,将特征区分度与特征冗余度之积作为特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集.实验将所提算法与其他聚类算法在14个UCI数据集上进行对比,结果验证了CH_KD算法的有效性与优势.
文摘针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。