期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于主题条件CNN-BiLSTM的旋律自动生成方法
1
作者
曹西征
张航
李伟
《河南师范大学学报(自然科学版)》
北大核心
2025年第3期135-142,共8页
为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲...
为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲的旋律主题;以旋律主题作为条件使用基于CNN-BiLSTM结构的模型进行旋律生成,其上半部分CNN可以有效地提取钢琴卷帘窗中所包含时间和音高之间的信息,下半部分利用LSTM和BiLSTM更好地捕捉到序列中的时序信息.结果表明,相较于现有的MidiNet模型,使用的旋律主题条件CNN-BiLSTM模型在准确率、归一化KL散度方面分别高出23%和0.17,生成的乐曲在连贯性和情感表达方面也优于传统的模型.
展开更多
关键词
音乐生成
自动作曲
CNN-BiLSTM
旋律主题提取
聚类
在线阅读
下载PDF
职称材料
题名
基于主题条件CNN-BiLSTM的旋律自动生成方法
1
作者
曹西征
张航
李伟
机构
河南师范大学计算机与信息工程学院、智慧商务与物联网技术河南省工程实验室、河南省教育人工智能与个性化学习重点实验室
出处
《河南师范大学学报(自然科学版)》
北大核心
2025年第3期135-142,共8页
基金
国家自然科学基金(U1604154)
河南省重点科技攻关项目(252102211035).
文摘
为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲的旋律主题;以旋律主题作为条件使用基于CNN-BiLSTM结构的模型进行旋律生成,其上半部分CNN可以有效地提取钢琴卷帘窗中所包含时间和音高之间的信息,下半部分利用LSTM和BiLSTM更好地捕捉到序列中的时序信息.结果表明,相较于现有的MidiNet模型,使用的旋律主题条件CNN-BiLSTM模型在准确率、归一化KL散度方面分别高出23%和0.17,生成的乐曲在连贯性和情感表达方面也优于传统的模型.
关键词
音乐生成
自动作曲
CNN-BiLSTM
旋律主题提取
聚类
Keywords
music generation
automatic composition
CNN-BiLSTM
main melody extraction
clustering
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于主题条件CNN-BiLSTM的旋律自动生成方法
曹西征
张航
李伟
《河南师范大学学报(自然科学版)》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部